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We study the joint spectral properties of photon pairs generated by spontaneous parametric down-conversion
in a one-dimensional nonlinear photonic crystal in a collinear, degenerate, type-II geometry. We show that the
photonic crystal properties may be exploited to compensate for material dispersion and obtain photon pairs that
are nearly factorable, in principle, for arbitrary materials and spectral regions, limited by the ability to fabricate
the nonlinear crystal with the required periodic variation in the refractive indices for the ordinary and extraor-
dinary waves.
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I. INTRODUCTION

Two-photon states with specific continuous-variable en-
tanglement properties are required for a number of quantum-
information-processing applications. In particular, pure-state
single photons, crucial for applications relying on interfer-
ence between independently prepared single photons, such as
quantum computing with linear optics �1�, entanglement
swapping �2�, and teleportation �3�, can be heralded only
from factorable photon pairs, where no correlations exist be-
tween the constituent single photons �4�. Let us note that
factorability may be imposed by postselecting an appropriate
subensemble of photon pairs through spectral and/or spatial
filtering; this can be done only at the cost of a typically
drastic reduction in count rate and source brightness. Scal-
able quantum-information processing requires the elimina-
tion of this type of postselection. It has furthermore been
shown that, for quantum-information applications involving
multiple-pair generation resulting from high-gain parametric
down-conversion, spectral or spatial filtering is likewise in-
effectual �5�. In addition, the coexistence of factorability and
a large generated bandwidth is important for some applica-
tions, such as the generation of ultrashort Fourier-transform-
limited heralded single photons �6�. The process of sponta-
neous parametric down-conversion represents a well-
established method for the generation of photon pairs,
leading to unparalleled flexibility in the resulting continuous-
variable entanglement properties. Indeed, the nonlinear crys-
tal dispersion characteristics in conjunction with temporal
and spatial structure in the pump beam may be exploited to
engineer the type and degree of correlations present in spec-
tral and transverse wave-vector degrees of freedom at the
source, thus eliminating the need for photon pair filtering.

The use of a broadband pump is essential in the context of
the generation of photon pairs with spectrally engineered
properties; indeed, a monochromatic pump can access only a
one-dimensional subspace of signal-idler frequency space,
which precludes certain states of interest. Previous work has
established the central role that is played by group velocity
mismatch terms between the three fields involved in para-
metric down-conversion �pump, signal, and idler� in the de-
termination of the resulting photon pair properties. Thus, in
Ref. �7�, it was shown that if the pump pulse propagates at a
higher group velocity than one of the generated photons but

lower than the conjugate generated photon, then it becomes
possible to emit factorable photon pairs. An important limi-
tation of this technique is that the group velocity condition
which must be satisfied occurs only for specific materials, at
specific spectral ranges �8,9�, typically in the infrared where
single-photon detection is unfortunately not well developed.
A number of techniques have been proposed and in some
cases implemented which enable effective control over the
photon pair entanglement properties in the spectral domain
unconstrained by material dispersion. In one such technique,
the effective group velocities experienced by the three fields
involved are modified by the angular dispersion introduced
by a pair of diffraction gratings placed before and after the
nonlinear crystal so as to generate photon pairs with tunable
spectral characteristics �10,11�. Alternatively, the spectral
content of two photon states may be restricted to the modes
supported by a nonlinear cavity which leads, for a short,
high-finesse cavity, to factorable, narrowband photon pair
generation �12�. Likewise, on the one hand a transversely
pumped source where signal and idler photons are emitted in
a counterpropagating waveguided geometry �13� and on the
other hand noncollinear parametric down-conversion �PDC�
where a specific relationship between transverse and longi-
tudinal phase matching is attained �14� can both lead to
states with spectrally engineered properties. Another route is
the use of crystal superlattices, where the dispersion in short
crystal segments is compensated by birefringent compensa-
tors, permitting two-photon states with a wide range of pos-
sible spectral entanglement characteristics �4,15�.

Previous theoretical work has explored the use of nonlin-
ear photonic crystals in the context of the process of sponta-
neous parametric down-conversion. In particular, Refs.
�16,17� study the potential of semiconductor-based nonlinear
one-dimensional photonic crystals to yield phase-matching
properties appropriate for the generation of polarization-
entangled photon pairs. Likewise, it has been shown that
even a short one-dimensional photonic crystal is capable of
generating a considerable photon pair flux due to field local-
ization in such structures �18–20�. In this paper we study the
potential of exploiting the properties of one-dimensional
nonlinear photonic crystals in order to generate photon pairs
with engineered spectral entanglement properties. We con-
centrate on type-II, frequency degenerate, collinear PDC.
Collinear operation is important because it permits PDC in a
waveguided geometry, which leads to larger generation rates
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as well as to effective control over the transverse spatial
structure of the emitted light, crucial for efficient single-
mode fiber coupling and for spatial mode matching in inter-
ference experiments �21�. Type-II operation for which the
signal and idler photons are orthogonally polarized is impor-
tant because it enables efficient photon pair splitting. We
show that a weak index of refraction modulation present in
an otherwise standard birefringent nonlinear crystal can be
exploited to attain the group velocity conditions, in addition
to basic phase matching, required for factorable photon pair
generation.

II. ONE-DIMENSIONAL NONLINEAR
PHOTONIC CRYSTALS

In this paper we analyze the generation of photon pairs by
the process of parametric down-conversion in a ��2� material
characterized by a spatial periodicity in its linear optical
properties. In particular, we study PDC produced by a non-
linear photonic crystal �NLPC� based on a standard bulk
nonlinear crystal with uniaxial birefringence which has been
modified from its natural state by an appropriate physical
mechanism so as to yield a periodic variation of the index of
refraction for both polarizations, while maintaining the non-
linearity constant throughout the crystal thickness. Con-
cretely, within one period of the resulting Bragg grating, we
assume that the index of refraction for the ordinary ��=o�
and the extraordinary ��=e� rays are given by

n���,z� = �n�1��� , 0 � z � a ,

n�2��� , a � z � � .
� �1�

This unit cell is assumed to be replicated throughout the
crystal length. Here, � represents the Bragg period and a /�
is the duty cycle. We refer to such a material as a one-
dimensional nonlinear photonic crystal. Figure 1 shows a
crystal schematic where A indicates zones characterized by
indices of refraction no1 and ne1 and B indicates zones char-
acterized by indices of refraction no2 and ne2. We assume that
in zones A the crystal has been left in its natural state, while
in zones B it has undergone index change. For simplicity, we
assume that zones A and B are of equal length �leading to an
a /�=0.5 duty cycle� and we likewise assume that the per-
mittivity contrast �, equivalent to the index square contrast,
is frequency independent,

� =
2���1��� − ��2����

��1��� + ��2���
=

n�1���2 − n�2���2

n̄����2 , �2�

where

n̄����2 = �n�1���2 + n�2���2�/2 �3�

with �=e ,o. Throughout this paper we will assume that
propagation of the three fields involved is normal to each of
the interfaces between zones A and B. Under these condi-
tions, such a material can exhibit, for each of the polariza-
tions, a so-called photonic band gap centered at each of the
Bragg wavelengths,

��
Bragg,m = 2n̄��/m , �4�

where m=1,2 ,3 , . . ., and where �=e ,o. Within each band
gap, for a sufficient crystal thickness, light is efficiently re-
flected, while for frequencies outside the band gap, light
propagates in the form of so-called Bloch waves, which can
be written as

E�z,t� = EK�z�exp�i�K���z − �t�� . �5�

Here, EK�z� is the Bloch envelope, which exhibits a spatial
periodicity matching that of the material, i.e., EK�z+��
=EK�z�, while K��� represents the Bloch wave number. Note
that, for a continuous material without Bragg grating, the
Bloch envelope reduces to a constant, and therefore the
Bloch wave reduces to a plane wave. Following a coupled-
mode analysis where the spatial periodicity in the permittiv-
ity is assumed to be well represented by a weak perturbation
to the material permittivity, it can be shown that the Bloch
wave number in the vicinity of K=m	 /� can be expressed
as �22�

K�
�m���� = 	m/� ± 	�
��

�m�/2�2 − 
��
�m�
2. �6�

Here, ��
�m� represents the coupling coefficient between the

forward and backward waves,

��
�m� = i�1 − cos�m	���k̄����/�4	m� , �7�

and 
��
�m� represents the Bragg phase mismatch between

these two waves,


��
�m� = 2k̄���� − 2	m/� , �8�

where k̄�= n̄�� /c characterizes the underlying material dis-
persion; note that Eq. �4� follows from the condition 
��m�
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FIG. 1. �Color online� Schematic of a one-dimensional, nonlin-
ear photonic crystal. �a� Second-order nonlinearity. �b� Refractive
index, shown for one of the polarizations. �c� Representation of the
periodic material, with b=�−a.
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=0. A photonic band gap appears when ��
�m��0 and its ef-

fects become appreciable for 
��
�m��0. The band-gap

boundaries �min and �max are obtained by solving for the
frequencies such that the argument of the square root in Eq.
�6� vanishes. For a forward-propagating wave, the minus
sign in front of the square root in Eq. �6� should be used for
���min while the plus sign should be used for �
�max. Let
us note that, for a 0.5 duty cycle, Eq. �7� tells us that even-
order band gaps �m=2,4 ,6 , . . . � are suppressed.

In what follows, we will concentrate on first-order �m
=1� band gaps, though the analysis below could be employed
for any order. Note that for practical implementations it may
be challenging to fabricate the required Bragg gratings with
periods in the region of hundreds of nanometers compatible
with modified dispersive characteristics in the visible; alter-
natively, it is possible to use longer periods, together with
higher-order band gaps. The dispersive properties of NPLCs
are characterized by the function K���, where from this point
we omit the order superscript. For propagating waves at fre-
quencies in the vicinity of the band-gap boundaries, K���
can differ substantially from the underlying material disper-

sion relation k̄���. In particular, group velocities can be
strongly reduced, while group velocity dispersion terms �as
well as higher-order frequency derivatives of the wave num-
ber� can increase markedly from their values associated with
material-only dispersion.

In order to illustrate these effects, let us consider a spe-
cific example of a one-dimensional NLPC, based on a
�-barium-borate �BBO� crystal. We assume that the Bragg
period is given by �=279.1 nm with an a /�=0.5 duty
cycle, the angle subtended by the pump and the optic axis �to
be referred to as the propagation angle� is 41.8°, and the
permittivity contrast is �=0.027. Figure 2 shows the result-
ing dispersive properties. Figure 2�a� shows, for each of the
two polarizations, the Bloch wave number K��� as a func-
tion of frequency, showing clearly a band gap for each of the
polarizations, within which K��� becomes complex valued.
Figure 2�b� shows the group velocities for each of the two

polarizations, exhibiting a marked reduction near the band-
gap boundaries. Figure 2�c� shows the first frequency deriva-
tive of K���, or the reciprocal group velocity. Finally, Fig.
2�d� shows the group velocity dispersion �GVD� term for
each of the polarizations. It is apparent from the plot that
GVD can be greatly enhanced near the band-gap boundaries,
and likewise that it is possible to obtain both positive and
negative GVD.

III. PDC IN ONE-DIMENSIONAL PHOTONIC
NONLINEAR CRYSTALS

Following a standard perturbative approach, the quantum
state describing photon pairs produced by parametric down-
conversion in the spontaneous limit may be expressed as


��t�� � 
1 +
1

i�
�

0

t

dt�Ĥ�t���
vac� , �9�

where 
vac� denotes the vacuum and Ĥ is the interaction
Hamiltonian

Ĥ�t� = �0�
V

dV d�r��Êp
�+��r�,t�Ês

�−��r�,t�Êi
�−��r�,t� + H.c.

�10�

Here, V is the illuminated volume in the nonlinear medium,

d�r�� is the second-order nonlinearity, and Ê��r� , t� ��
= p ,s , i� represents the electric field operators associated with
each of the interacting fields. In a nonlinear photonic crystal,
each of these fields is described by a Bloch wave. Thus, if we
assume that the pump field is classical, it can be expressed as

Êp
�+��r�,t� →� d� �p���EKp

�z,��exp�i�Kp���z − �t�� ,

�11�

in terms of the Bloch wave number Kp���, Bloch envelope
EKp

�z ,��, and spectral amplitude �p���. It is convenient to
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FIG. 2. �Color online� Plots as
a function of frequency of �a� the
Bragg wave number K���, �b� the
group velocity 1/K����, �c�
K����, and �d� group velocity dis-
persion coefficient K����; for
comparison, the dotted horizontal
line indicates the magnitude of the
GVD coefficient for SF-10, a par-
ticularly dispersive glass.
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express the Bloch envelope as a Fourier series,

EKp
�z,�� = �

l

�pl���eiGlz, �12�

in terms of the spatial harmonics Gl=2	l /�. The signal and
idler fields are quantized; their positive-frequency part can be
expressed as

Ê�
�+��r�,t� = i� d��

l

��l��������â�„K���� + Gl…

� exp„i��K���� + Gl�z − �t�… �13�

in terms of the Bloch wave number K���� and the Bloch
envelope Fourier series coefficients ��l. Here, �����
=	��K�� ��� / �2�����S�, where K�� ��� is the first frequency
derivative of K�, â�(K���) is the annihilation operator for
the signal �s� or idler �i� modes, ����� is the permittivity in
the nonlinear medium, and S is the transverse beam area.

It can be shown that the resulting two-photon component
of the state may be written for specific directions of propa-
gation �throughout this paper assumed to be collinear with
the pump beam� as


�� = �
lmn

� � d�sd�i f lmn��s,�i�

�as
†
„K��s� + Gm…ai

†
„K��i� + Gn…
vac� , �14�

where the joint spectral amplitude f lmn��s ,�i� may be fac-
tored as f lmn��s ,�i�=�p��s+�i��lmn��s ,�i�. Here, �p��s

+�i� represents the pump spectral envelope function, while
�lmn��s ,�i� is a function which describes the phase-
matching properties of the nonlinear photonic crystal and can
be expressed as

�lmn��s,�i� = �pl��s + �i��sm
* ��s��in

* ��i�

� �s��s��i��i�sinc�L
Klmn/2�

� exp�iL
Klmn/2� , �15�

in terms of the frequency-dependent phase mismatch 
Klmn
adjusted by the momentum contribution due to the photonic
crystal structure,


Klmn = 
K + 2	�l − m − n�/� �16�

where 
K=Kp−Ks−Ki. The term proportional to 2	 /� is
similar to that which appears for quasi-phase-matched inter-
actions and has the effect of shifting the spectral range where
phase matching is attained. Thus, the phase-matching contri-
butions for different values of l−m−n, if they exist �i.e., if

Klmn=0�, will tend to be spectrally distinct from each other.
Note, however, that in general terms, for photonic crystal
periods in the hundreds of nanometers, contributions with l
−m−n�0 result in a term proportional to 2	 /� which will
tend to be larger than the wave numbers for each of the three
interacting fields, and will therefore also be larger in absolute
value than 
K; this makes it difficult to achieve 
Klmn=0 for
l−m−n�0.

Let us now consider the Bloch wave characteristics at 425
and 850 nm �which could represent pump and PDC wave-
lengths� in a material with the parameters specified at the end
of the previous section. Figure 3 shows the modulus of the
leading Fourier series coefficients �see Eqs. �12� and �13��,
calculated from the Bloch envelope, in turn determined by
the eigenvectors of the translation matrix which characterizes
the periodic material �22�. Figure 3�a� shows the Fourier co-
efficients for an extraordinary wave at 425 nm, Fig. 3�b�
shows the Fourier coefficients for an extraordinary wave at
850 mm, and Fig. 3�c� shows the Fourier coefficients for an
ordinary wave at 850 mm. Let us note that a wave at 425 nm
behaves essentially like a plane wave with negligible l�0
terms. This is due to the fact that for this specific material
there is no band gap in the vicinity of 425 nm; in particular,
the second-order band gap is suppressed by employing an
a /�=0.5 duty cycle. This specific material exhibits a band
gap centered at 904.9 nm for the ordinary wave and at
876.3 nm for the extraordinary wave. A wave of either po-
larization at 850 nm is sufficiently near to the corresponding
band gap that the resulting dispersion relation is significantly
modified �see Fig. 2�, yet as observed in Figs. 3�b� and 3�c�
they behave essentially as plane waves with small m=1 and
n=1 �i.e., reflected wave� contributions and where other con-
tributions are negligible.

In what follows, we will study the generation of PDC
where the emission frequency is in sufficient proximity to the
band-gap boundaries so that dispersion is strongly modified,
though sufficiently removed so that the fraction of light ap-
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FIG. 3. �Color online� Normalized modulus of Fourier coefficients for �a� an extraordinary wave at 425 nm, �b� an extraordinary wave
at 850 nm, and �c� an ordinary wave at 850 nm.
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pearing in modes other than the fundamental mode �deter-
mined by the values of m ,n� is small; see Figs. 2 and 3. In
this regime the signal and idler photons propagate essentially
as plane waves, yet with a modified dispersion relation with
respect to an equivalent source without a photonic crystal
structure. From Eq. �7� there is no second-order band gap for
a 0.5 duty cycle, which implies that the effect of the photonic
crystal tends to be insignificant for the pump field, making
contributions with l�0 negligible. Thus, in this paper, we
will concentrate on the contribution l=m=n=0, which cor-
responds to the fundamental, forward-propagating mode for
the three interacting fields.

IV. CONDITIONS FOR FACTORIZABILITY

In order to carry out an analysis of the relationship be-
tween the various experimental parameters and the resulting
spectral entanglement properties, it is convenient to express
the phase mismatch as a power series in the frequency de-
tunings �s,i=�s,i−�o, where �o is the degenerate frequency
and L is the crystal length,

L
K � L
K�0� + �
j=1

4

��s
�j��s

j + �i
�j��i

j� + �2�p
�2� + 3�p

�3���s + �i�

+ 2�p
�4��2�i

2 + 3�s�i + 2�s
2���s�i + ��5� . �17�

Here, ��5� represents fifth- and higher-order terms in the
detunings while 
K�0� represents the frequency-independent
term, which vanishes when perfect phase matching occurs at
�o,


K�0� = Ks��o� + Ki��o� − Kp�2�o� . �18�

Equation �17� is written in terms of the mismatch in the
jth frequency derivative of the wave number between the
pump and the signal and idler wave packets �s,i

�j�, and a term
proportional to the jth frequency derivative of the pump
wave number �p

�j�,

��
�j� = L�Kp

�j� − K�
�j�� ,

�p
�j� = LKp

�j�, �19�

in terms of

K�
�j� = �1/j!�
�djK�/d� j�
�=�o

,

Kp
�j� = �1/j!�
�djKp/d� j�
�=2�o

. �20�

Let us note that for type-II PDC in standard nonlinear
crystals it is typically sufficient to consider a power series
expansion of the phase mismatch up to the group velocity
terms. However, for NLPCs with the signal and idler fre-
quencies in proximity to one of the band-gap boundaries,
GVD and higher-order dispersion terms are strongly en-
hanced with respect to an equivalent source without a pho-
tonic crystal structure. Thus, it becomes necessary to con-
sider higher-order terms; here we have considered up to
quartic order in the frequency detunings.

In order to facilitate an analysis of the conditions under
which it is possible to generate two-photon states that are
close to factorable, we write down the joint spectral ampli-
tude in terms of Gaussian functions. This can be achieved by
modeling the pump envelope function as a Gaussian func-
tion,

�p��s + �i� = exp�− ��s + �i − 2�o�2/�2� , �21�

and by approximating the sinc function in the phase-
matching function as a Gaussian function, i.e., sinc�x�
�exp�−�x2� with ��0.193. Under these approximations,
the joint spectral amplitude can be expressed as

f��s,�i� � exp�− ��/4��L2
K2 + 4��s + �i�2/���2��

+ iL
K/2� . �22�

By writing L
K in Eq. �22� as its power series expansion
�Eq. �17��, and keeping terms up to fourth order while as-
suming that 
K�0�=0, the joint spectral amplitude becomes

f��s,�i� � exp�− ��/4���s��s� + �i��i� + �si��s,�i���
�23�

where

����� = ����
�1��2 + 4/���2���2 + 2��

�1���
�2��3

+ ����
�2��2 + 2��

�1���
�3���4 − i�2/���

j=1

4

��
�j�� j �24�

and

�si��s,�i�/�2�s�i� = �s
�1��i

�1� + 4/���2� + �2�p
�2��s

�1� + �s
�2��i

�1���s + �2�p
�2��i

�1� + �i
�2��s

�1���i + �2�p
�2��s

�2� + 3�p
�3��s

�1� + �s
�3��i

�1���s
2

+ �2�p
�2��i

�2� + 3�p
�3��i

�1� + �i
�3��s

�1���i
2 + �2��p

�2��2 + �s
�2��i

�2� + 3�p
�3���s

�1� + �i
�1����s�i − i�2/����p

�2� + �3/2��p
�3���s + �i�

+ �p
�4��2�s

2 + 3�s�i + 2�i
2�� . �25�

While ����� �with �=s , i� represents the contributions
that depend only on one of the two frequencies, �si��s ,�i�
depends on both frequencies, and gives rise to correlations in

the two-photon state; factorability is attained if �si��s ,�i�
=0. It is apparent from Eqs. �24� and �25� that the dominant
terms which govern the phase-matching behavior are the
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group velocity mismatch terms, proportional to �s,i
�1�. Let us

consider the effect of making both of these group velocity
mismatch terms vanish, i.e.,

�s
�1� = �i

�1� = 0. �26�

In this case, for which the pump, signal, and idler propa-
gate at the same group velocity, the expression for the joint
spectral amplitude greatly simplifies, and in particular many
of the mixed terms giving rise to correlations are suppressed.
The modulus of the joint spectral amplitude becomes


f��s,�i�
 � exp�− �s
2/�2 − ���s

�2��2�s
4/4�

�exp�− �i
2/�2 − ���i

�2��2�i
4/4�

�exp�− 2�s�i/�
2 + ��p

�2���s
�2��s

3�i + �i
�2��s�i

3�

+ ����p
�2��2 + �s

�2��i
�2�/2��s

2�i
2� , �27�

while the argument becomes

arg�f��s,�i�� � �1/2��
j=2

4

��s
�j��s

j + �i
�j��i

j� + �s�i��p
�2� + 3�p

�3���s

+ �i� + 2�p
�4��2�s

2 + 3�s�i + 2�i
2�� . �28�

Equation �27� is written as a product of three exponen-
tials, where the first two represent the factorable components
and the third term describes spectral �modulus� correlations
between the signal and idler photons. Likewise, in Eq. �28� it
is the second term, with a �s�i overall multiplicative factor,
which describes spectral phase correlations between the sig-
nal and idler photons.

Let us now in addition suppose that the signal and idler
photons experience much stronger dispersion than the pump.
In particular, let us assume that jth-order pump dispersion
coefficients �p

�j� may be neglected with respect to the signal
and idler jth-order dispersion coefficients �s,i

�j�, i.e.,


�p
�j�
 � 
�s

�j�
, 
�i
�j�
 . �29�

It may be shown that, if the condition in Eq. �29� with j
=2 is satisfied, the fourth-order mixed terms in Eq. �27� pro-
portional to �p

�2� may be neglected. Similarly, if the condition
in Eq. �29� with j=2,3 ,4 is satisfied, the mixed terms in the
argument of the joint amplitude �Eq. �28�� may be neglected.
Imposing this weak pump dispersion condition, the expres-
sion for the joint spectral amplitude is thus further simplified.
The modulus may now be written as


f��s,�i�
 � exp�− ��s + �i�2/�2 − ��/4���s
�2��s

2 + �i
�2��i

2�2�
�30�

while the argument may be written as

arg�f��s,�i�� � �1/2��
j=2

4

��s
�j��s

j + �i
�j��i

j� . �31�

Let us note that, while the modulus contains mixed terms
proportional to �s�i and to �s

2�i
2, the argument does not con-

tain mixed terms. Let us now assume, in addition to group
velocity matching �see Eq. �26�� and weak pump dispersion
�see Eq. �29��, that the pump is broadband. It may be shown

from Eq. �30� that the joint spectral amplitude exhibits no
dependence on the pump bandwidth if

� � 2�4/��1/4��s
�2� + �i

�2��−1/2. �32�

Thus, for a sufficiently broadband pump �so that Eq. �32�
is satisfied�, the modulus of the joint spectral amplitude re-
duces to


f��s,�i�
 � exp�− ��/4���s
�2��s

2 + �i
�2��i

2�2� . �33�

We have seen that when the following three conditions are
satisfied: �1� complete group velocity matching �see Eq.
�26��, �2� weak pump dispersion �see Eq. �29��, and �3� suf-
ficiently broadband pump �see Eq. �32��, the joint spectral
amplitude attains a particularly simple form in which there is
a single mixed term, proportional to �s

2�i
2 �up to fourth order

in 
k2�. For the specific cases we analyzed �see the next
section�, while conditions 1 and 3 must be satisfied in order
to attain nearly factorable two-photon states, the effect of the
mixed terms controlled by condition 2 is comparatively
small. As will be illustrated with a specific example in the
following section, a joint spectral amplitude which ap-
proaches the functional form of Eq. �33� can describe a
nearly factorable two-photon state. In this case, the ratio
�s

�2� /�i
�2� controls the degree of elongation and orientation

�horizontal or vertical� of the joint spectral intensity in
��s ,�i� space. Thus, with favorable dispersive properties, it
becomes possible to generate states ranging from those with
equal bandwidths for signal and idler to highly elongated
ones.

In the next section, we will show that the properties of
one-dimensional nonlinear photonic crystals may be ex-
ploited for the fulfillment of conditions 1 and 3, and partial
fulfillment of condition 2.

V. FULFILLMENT OF CONDITIONS WITH NONLINEAR
PHOTONIC CRYSTALS

Our strategy for controlling the spectral properties of PDC
photon pairs generated by one-dimensional NLPCs is based
on the observation that the group velocity is sharply reduced
for frequencies in the vicinity of the band-gap boundaries, as
illustrated in Fig. 2�b�. It is possible to exploit the properties
of photonic crystals to compensate for material dispersion
and to impose specific conditions on the group velocities of
the three interacting fields. Indeed, while for a standard op-
tical material the pump will tend to propagate at a lower
group velocity than the generated light, it is possible to de-
sign a NLPC so that the group velocities of the signal and
idler photons in proximity to one of the band-gap boundaries
are reduced sufficiently to make them equal to the pump
group velocity. The former can be achieved while maintain-
ing essentially a plane-wave character for the corresponding
signal and idler Bloch waves. Likewise, the NLPC can be
designed so that the pump frequency is far from band gaps,
so that the pump field is essentially unaffected by the photo-
nic crystal structure. Indeed, NLPCs make it possible to at-
tain, even in a type-II geometry where each of the three fields
experiences different dispersion characteristics, complete

MARÍA CORONA AND ALFRED B. U’REN PHYSICAL REVIEW A 76, 043829 �2007�

043829-6



group velocity matching where Kp�=Ks�=Ki�, or in the nota-
tion of the previous section �s

�1�=�i
�1�=0.

In order to simplify our analysis of realistic NLPCs, we
first limit the parameter space; we assume that the crystal is
operated at room temperature and assume a duty cycle a /�
=0.5 throughout. Likewise, we regard the degenerate PDC
frequency �o as a fixed parameter. It is indeed remarkable
that, in general, nearly factorable PDC photon pair sources
based on NLPCs permit the specification of an arbitrary cen-
tral emission wavelength, and for that matter an arbitrary
material, constrained only by the ability to fabricate the crys-
tal with the required periodic index of refraction variation.
Thus, for degenerate collinear PDC at a given freely speci-
fied central frequency, we are left with the following experi-
mental parameters: Bragg period ���, permittivity contrast
���, crystal propagation angle ��pm�, crystal length �L�, and
pump bandwidth ���.

In what follows we present a numerical analysis for the
simultaneous fulfillment of basic phase matching �
K�0�=0;
see Eq. �18�� and complete group velocity matching �see Eq.
�26�� for a one-dimensional NLPC based on a BBO crystal.
Let us note that these conditions are independent of crystal
length and pump bandwidth. Thus, we have three variables:
Bragg period ���, permittivity contrast ���, and crystal
propagation angle ��pm� with which to satisfy three condi-
tions: �i� 
K�0�=0, �ii� Kp�=Ks�, and �iii� Kp�=Ki� �where the
pump frequency derivatives are evaluated at 2�o while sig-

nal and idler frequency derivatives are evaluated at �o�.
Figure 4�a� shows in �� ,�pm� space, for three different

values of �, the contour defined by the condition 
K�0�=0
together with the contour defined by the condition Kp�=Ks�.
Note that both contours shift as the Bragg period � is modi-
fied. Similarly, Fig. 4�b� shows, for the same three values of
�, the contour defined by the condition 
K�0�=0 together
with the contour defined by the condition Kp�=Ki�. There ex-
ists a specific value of the Bragg period � for which the
three contours meet at a single point in �� ,�pm� space, yield-
ing the specific values of the three parameters ��, �pm, and
�� which satisfy simultaneously phase matching and com-
plete group velocity matching. Assuming �o=2	c /�0
=850 nm �which we stress may be freely specified�, these
values are �=0.028, �pm=41.1°, and �=274.9 nm, obtained
numerically from the intersection of the three resulting con-
tours �see Fig. 4�c��. For this choice of parameters, Fig. 4�d�
shows a plot of the group velocities for the ordinary and
extraordinary waves. In this plot we indicate that, for a
type-II interaction where the pump is an extraordinary wave
and the signal and idler are extraordinary and ordinary, re-
spectively, we indeed obtain identical group velocities for the
three fields. Let us note that to our knowledge no other re-
ported technique permits complete group velocity matching
in a collinear, type-II nonlinear parametric interaction.

According to the conditions derived in the previous sec-
tion, in order to guarantee factorability we require the fulfill-
ment of the weak dispersion condition �see Eq. �29��, in ad-
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FIG. 4. �Color online� Graphi-
cal representation of �a� the condi-
tions �i� 
K=0 and �ii� Kp�=Ks�,
and �b� the conditions �i� 
K=0
and �ii� Kp�=Ki� on �� ,�pm� space,
for constant � �we have used the
values �=277.8 �shown in blue�,
274.9 �red�, and 271.9 nm
�black��. Each intersection point
indicates a solution for simulta-
neous phase matching and group
velocity matching between the
pump and one of the generated
photons. �c� Graphical representa-
tion of the conditions �i� 
K=0,
�ii� Kp�=Ks�, and �iii� Kp�=Ki� on
�� ,�pm� space, assuming �
=274.9 nm. The intersection point
indicates a solution for simulta-
neous phase matching and com-
plete group velocity matching.
Note that, in the shaded area, the
wave number becomes complex,
and therefore light does not propa-
gate. �d� Group velocity vs fre-
quency for the ordinary and ex-
traordinary waves; the dotted
�black� lines indicate the resulting
complete group velocity matching.
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dition to complete group velocity matching. In particular, if
this condition is satisfied for j=2, then three of the four
remaining mixed terms in the joint spectral amplitude �to
fourth order in the detunings� are suppressed. As illustrated
by Fig. 2, when the signal and idler frequencies are in prox-
imity to one of the band-gap boundaries while the pump
experiences essentially only the material dispersion, group
velocity dispersion and higher-order terms associated with
the generated light will be greatly enhanced with respect to
corresponding pump quantities. Thus, for the specific experi-
mental parameters yielding complete group velocity match-
ing �see the previous paragraph�, the resulting second-order
dispersion coefficients are �s

�2�=6.12 fs2, �i
�2�=0.87 fs2, and

�p
�2�=0.16 fs2. The condition 
�p

�2�
� 
�s
�2�
 , 
�i

�2�
 will be more
accurately satisfied the closer the degenerate PDC frequency
is to the band-gap boundaries for each polarization. How-
ever, note that, because the band-gap boundaries for the two
polarizations are spectrally distinct, the weak pump disper-
sion condition cannot be satisfied to the same degree for both
photons. Thus, for this specific choice of parameters, while
the three mixed terms proportional to �p

�2� are reduced, they
cannot be suppressed perfectly.

The third condition for factorability derived in the previ-
ous section, apart from complete group velocity matching
and weak pump dispersion, is that the pump should be suf-
ficiently broadband �see Eq. �24��. Note that, while the Bragg
period, permittivity contrast, and crystal propagation angle
must have specific values in order to guarantee complete
group velocity matching, the pump bandwidth and crystal
length must satisfy a comparatively soft condition given as
the inequality in Eq. �32�. Figure 5 represents the resulting
joint spectral intensity 
�p��s+�i��000��s ,�i�
2, for a pump
centered at �p=2	c / �2�o�=425 nm with a full width at half
maximum �FWHM� bandwidth of 10 nm, with crystal length
L=4 mm, and where the rest of the parameters are as speci-
fied above, in the context of Fig. 4. Note that in this plot we
have taken into account the complete dispersion �rather than
a truncated power series approach� and have not used the
Gaussian approximation. While these approximations were

essential for our analysis, it is important to verify the degree
of factorability in a two-photon state produced by a realistic
source. Figure 5�a� shows the pump spectral envelope
�p��s+�i� as given by Eq. �21�, Fig. 5�b� shows the phase-
matching function �000��s ,�i� as given by Eq. �15�, and Fig.
5�c� shows the joint spectral intensity. It is apparent from the
figure that the resulting two-photon state is nearly factorable.
Indeed, a numerical Schmidt decomposition �23� yields a
Schmidt number of K�1.11 �which could be reduced further
by moderate spectral filtering�.

As has already been discussed, the effective control over
group velocity properties permitted by photonic crystal struc-
tures, which may be exploited to obtain nearly factorable
two-photon states, enhances higher-order dispersion terms.
This has the effect that, when complete group velocity
matching is not satisfied, the contours of equal amplitude of
the phase-matching function in ��s ,�i� space tend to be
highly curved. Therefore, the technique presented here is not
naturally suited for the generation of states exhibiting strict
correlation or anticorrelation in frequency, unless the band-
width of interest is small enough that the curvature of the
phase-matching function may be neglected.

For practical implementations of this technique, it is im-
portant to analyze the required tolerances for the experimen-
tal parameters, in order to ensure factorizability. Figure 6
shows a plot of the Schmidt number K as a function of the
three parameters which must satisfy a strict condition in or-
der to attain complete group velocity matching. We plot the
Schmidt number as a function of each of these parameters,
while maintaining all others equal to their nominal values
�which yield the minimum value of K�. Thus, Fig. 6�a� shows
K vs the Bragg period �, Fig. 6�b� shows K vs the permit-
tivity contrast �, and Fig. 6�c� shows K vs the crystal propa-
gation angle �pm. We define the tolerance in variable x as

x=x2−x1 where x1,2 �with x2
x1� are the values where K
rises to K=	2Kmin in terms of the value of the Schmidt num-
ber attained when all variables are equal to their nominal
values Kmin. Thus, we obtain 
��1.04 nm, 
��0.011, and

�pm�1.23°.
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VI. CONCLUSIONS

We have studied the generation of photon pairs by spon-
taneous parametric down-conversion in a one-dimensional
nonlinear photonic crystal, with a broadband pump. We have
considered a NLPC based on a standard ��2� crystal with
uniaxial birefringence where the dispersion for both polariza-
tions has been altered from its natural state so that, through-
out the length of the resulting crystal, the index of refraction
for each polarization alternately takes the value consistent
with material-only dispersion and a value that is larger than
the former, consistent with a small permittivity contrast. We
have developed a set of conditions that must be satisfied in
order to guarantee a nearly factorable two-photon state.
These conditions are �i� complete group velocity matching,
where the pump pulse and the signal and idler photons
propagate at the same group velocity �see Eq. �26��, �ii� weak
pump dispersion �characterized by coefficients �p

�j�; see Eq.
�19��, relative to signal and idler dispersion �characterized by
coefficients �s,i

�j�; see Eq. �29��, and �iii� sufficient pump band-
width �see Eq. �32��. We have shown that the strongly modi-
fied dispersion in the spectral vicinity of the band-gap

boundaries in a NLPC may be exploited in order to satisfy
condition �i�, and to partially satisfy condition �ii�. The es-
sential advantage of this technique is that for an arbitrary
nonlinear material operated at an arbitrary spectral range it is
in principle possible to design a photonic-crystal structure
which counteracts the material dispersion so as to permit the
generation of nearly factorable photon pairs in a type-II de-
generate, collinear geometry which is compatible with
waveguiding and which permits high-efficiency photon pair
splitting. It is, however, anticipated that the fabrication of the
appropriate photonic-crystal structure may pose the main
technical challenge in practical implementations. Longer
Bragg periods, potentially more easily fabricated, could be
exploited through higher-order band gaps. It is expected that
this work may be important for the development of opti-
mized nonclassical light sources for quantum-information
processing.
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