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(CICESE), Baja California, México; bInstituto de Ciencias Nucleares, Universidad Nacional

Autónoma de México, México
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We study photon pair generation through scalar spontaneous four-wave mixing
in single-mode fiber and for frequency-degenerate pumps; we concentrate on
source geometries which fulfil full group velocity matching (GVM), i.e. where the
pump, signal and idler propagate at identical group velocities. We discuss two
experimental techniques which permit the attainment of full GVM, and discuss
the resulting two-photon state properties. In particular, we show that full GVM
can lead to sources which approach phase-matching unconstrained by dispersion
and therefore with a remarkably large bandwidth. We also discuss the generation
of nearly-factorable states as an application of full GVM.

Keywords: spontaneous four-wave mixing; entanglement; dispersion
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1. Introduction

The process of spontaneous four-wave mixing (SFWM) in optical fiber, in which two
pump photons are jointly annihilated to generate a signal and idler photon pair, leads to
a remarkably versatile photon pair source [1–3]. Indeed, careful choice of the properties of
the pump fields, which can be spectrally degenerate or non-degenerate, and of the
properties of the fiber, can lead to two-photon states with widely disparate characteristics,
ranging from factorable to highly entangled. Let us note that for a photon-pair source
where the generation process is constrained to a single transverse mode, as in single-mode
optical fiber, the resulting photon pairs are unentangled in transverse wavevector, leaving
frequency as the only continuous-variable degree of freedom where entanglement may
reside. While spectrally factorable two-photon states are essential for heralding of pure
single photons [4], at the opposite extreme highly entangled photon pairs [5,6] have useful
applications in quantum-enhanced two-photon absorption [7], single-photon wavepacket
teleportation [8], and quantum optical coherence tomography [9], among others. It has
been shown that both factorable [10,11] and highly entangled [5,6] photon pairs may be
generated through parametric downconversion (PDC) in second-order non-linear crystals.
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However, SFWM greatly facilitates (with respect to PDC) the fulfilment of the conditions
required for spectrally engineered states including both factorable and highly entangled
ones. Besides, the guided nature of a spontaneous non-linear process in fiber leads to
higher parametric gains and evidently suppresses losses due to fiber-coupling. Thus, for
example, as shown in [12], any fiber with two zero dispersion frequencies permits the
generation of two-photon states with an arbitrary orientation in the joint frequency space
{!s,!i}, including factorable states as a special case.

In this paper, we study SFWM sources in the degenerate pumps regime for which full
group velocity matching is fulfilled, i.e. where the pump, signal and idler propagate at
identical group velocities. We show that a source with these characteristics may approach
phase-matching unconstrained by dispersion, and therefore lead to a remarkably large
phase-matching bandwidth, both for the pump and the generated light. Likewise, we show
that long fibers which fulfil a certain condition on the second-order dispersion coefficients,
permit the generation of nearly factorable states, in a source geometry which is well suited
for multiple-pair generation through a large parametric gain.

2. Theory

The quantum state of photon pairs produced by spontaneous, scalar four-wave mixing
in an optical fiber of length L can be obtained following a standard perturbative approach.
It is given by

jCi ¼ j0isj0ii þ �d!s

ðð
d!iF !s,!ið Þ !sj is !ij ii: ð1Þ

Here, � represents the generation efficiency and F(!s,!i) is the joint spectral amplitude
function (JSA), which describes the spectral entanglement properties of the photon pairs.
For frequency-degenerate pumps, F(!s,!i) can be expressed as [12]

F !s,!ið Þ ¼

ð
d!0� !0ð Þ� !s þ !i � !

0ð Þ sinc L�k !0,!s,!ið Þ=2½ � exp iL�k !0,!s,!ið Þ=2½ �: ð2Þ

The JSA function is given in terms of the phase mismatch function �k(!1,!s,!i)¼
k(!1)þ k(!sþ!i�!1)� k(!s)� k(!i)� 2�P, which includes a self/cross-phase modulation
contribution for the pump with peak power P, characterized by the nonlinear parameter �,
and the spectral shape �(!) of the pump.

It can be shown that in the case where the pumps are narrowband, it becomes possible
to obtain an analytic expression in closed form for the JSA

Fcwð!s,!iÞ ¼ N�ð!s þ !i � 2!pÞ sinc ½L�kcwð!s,!iÞ=2� exp½iL�kcwð!s,!iÞ=2�, ð3Þ

in terms of a normalization constant N and the monochromatic pump phase mismatch
�kcw

�kcwð!s,!iÞ ¼ 2k !s þ !ið Þ=2½ � � kð!sÞ � kð!iÞ � 2�P: ð4Þ

For broadband, degenerate pumps it is likewise possible to obtain an expression for
the JSA in closed analytic form, if we approximate the phase mismatch L�k by
a truncated power series in !, and model the pump to have a Gaussian spectral envelope,
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i.e. S(!)¼ exp[�(!�!p)
2/�2] (with central frequency !p and bandwidth �). Keeping up to

second-order terms in the power series, it can be shown that the JSA may be expressed as
F(�s, �i)¼N0�(�s, �i)�(�s, �i), where we have defined frequency detunings �	¼!	�!	0,
with 	¼ s, i and where !	0 represent central phase-matched frequencies. Here, N0

represents a normalization constant, �(�s, �i)¼ exp[�(�sþ �i)
2/(2�2)] and �(�s, �i)¼�(C0;

Z(�s, �i)) with

�ða; xÞ ¼ expð�x2Þ erfðixð1� iaÞ1=2Þ � erfðixÞ
� ��

ðaxÞ, ð5Þ

where erf(�) denotes the error function, C0 ¼ 

ð2Þ
p �

2=2, and

Zð�s, �iÞ ¼
ð�s þ �iÞ

2
� 4�ð�s, �iÞ=


ð2Þ
p

h i1=2
ð21=2�Þ,

ð6Þ

in terms of the phase mismatch product L�k evaluated within our second-order
approximation, �(�s, �i),

�ð�s, �iÞ ¼ L�kð0Þ þ 
ð1Þs �s þ 

ð1Þ
i �i þ 


ð2Þ
s �

2
s þ 


ð2Þ
i �

2
i þ 


ð2Þ
p �s�i: ð7Þ

In the previous equations we have introduced the definitions 
ðnÞ	 ¼ L½kðnÞð!pÞ �

kðnÞð!	0Þ�=n!, with 	¼ s, i, and 
ð2Þp ¼ Lkð2Þð!pÞ, in terms of the nth order derivatives
k(n)(!	)¼ dnk/d!n

j!¼!	0.
We are particularly interested in cases where the three fields (pump, signal and idler)

propagate along the fiber with identical group velocities, which we refer to as full group
velocity matching. In this case, the 
ð1Þ	 terms in Equation (7) vanish. Assuming that phase-
matching is fulfilled at frequencies !s0 and !i0, the �k(0) term (see Equation (7)) also
vanishes. In this case, the two-photon state properties are fully determined to lowest order
by group velocity dispersion terms. Let us note that for frequencies sufficiently removed
from !s0 and !i0, Equations (5) and (6) are no longer valid. This description is likewise not
valid if 
ð2Þp ¼ 0, or if all second-order dispersion coefficients vanish.

3. Phase-matching properties of optical fibers with more than one zero dispersion

frequency

In this paper we consider the use of step-index fibers (SIF), in both, the low and high
dielectric contrast regimes, depending on the application. We are particularly interested in
SFWM sources based on fibers which exhibit two zero dispersion frequencies (ZDF) in the
spectral range of interest. Note that while some of the geometries to be considered exhibit
a third ZDF, if this third ZDF is sufficiently removed from the two ZDFs under
consideration, its effects are limited. As was shown in [12], fibers with two ZDFs permit
a remarkable flexibility in terms of engineering the spectral entanglement properties of the
resulting two-photon states. One way to represent the phase-matching (PM) properties of
a given fiber is to plot on a generated frequencies versus pump frequencies diagram, pairs
of frequencies which yield perfect PM, i.e. �k¼ 0. Such a plot is presented in Figure 1(a)
by the thick black contour, for a SIF with a fused silica cladding and a core such that the
index contrast is �n¼ (nco� ncl)/nco¼ 0.0274 (nco/ncl are the core/cladding indices of
refraction), with a core radius of r¼ 1.652 mm. In this diagram, the horizontal axis
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corresponds to the pump frequency, and the vertical axis corresponds to the
generated frequencies, expressed as a detuning � from the pump frequency,
i.e. �¼!�!p (the top/bottom half of the diagram corresponds to the signal/idler
photon). It can be seen from this illustration that parametric generation occurs for a range
of pump frequencies essentially corresponding to the interval between the two ZDFs; for
the specific case shown, the zero dispersion wavelengths are �zd1¼ 2
c/!zd1¼ 1434.3 nm,
and �zd2¼ 2
c/!zd2¼ 1733.5 nm (this fiber has a third zero dispersion wavelength �zd3¼
2
c/!zd3¼ 2224.3 nm). The ZDFs are marked on the diagram by two blue vertical long-
dashed lines; Figure 1(b) shows that these frequencies correspond to the two points with
vanishing slope on a k(1) versus ! plot (and therefore with k(2)¼ 0). Figure 1(b) illustrates
an important property of fibers with two ZDFs: within the frequency interval bounded by
the two ZDFs, anomalous group velocity dispersion is observed, which is intimately
connected with the appearance of closed-loop PM contours, as in Figure 1(a). Note that
for a finite pump power, self/cross-phase modulation suppresses phase matching for
degenerate signal/idler frequencies. As a consequence, modulation instability splits the
trivial solution into two closely-spaced branches, where the separation increases with
pump power [13]; here we have assumed �¼ 70W�1 km�1 and P¼ 2W.

The two-photon spectral characteristics are governed to first order by the coefficients

ð1Þs and 
ð1Þi . It was shown in [12] that, for a broadband pump, specific conditions on these
parameters, which quantify the group velocity mismatch between the pump pulse and the
generated photons, permit the generation of two photon states with useful properties

Figure 1. Phase-matching diagram for a SIF with core radius r¼ 1.652 mm and index contrast
�n¼ 0.0274. (a) Thick black line: �k¼ 0 contour; thin blue lines: contours defined by constant
orientation angle. (b) k(1) versus !. (c) k(1) versus �s0¼!�!GVM. (The color version of this figure is
included in the online version of the journal.)
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including the important class of factorable states. It is instructive to plot in the {!p,�}

space of Figure 1(a) the GVM contours defined by the conditions 
ð1Þs ¼ 0, equivalent to

kð1Þs ¼ kð1Þp (GVM between the pump and the signal photon), and 
ð1Þi ¼ 0, equivalent to

k
ð1Þ
i ¼ kð1Þp (GVM between the pump and the idler photon). In Figure 1(a) these contours

correspond to the thin blue lines and are labeled by �pm ¼ � arctan ð
ð1Þs =

ð1Þ
i Þ, which was

shown in [12] to correspond to the orientation angle of the phase-matched region in the

joint frequency space {!s,!i}; the two GVM scenarios above lead to values �pm¼ 0� and

�pm¼ 90�, respectively. In the figure we have in addition included the contours

corresponding to �pm¼�45
�. Pairs of values {!p,�} for which the GVM contours

for all �pm intersect, to be referred to as FGVM points, indicate {!p,�} values for which

full group velocity matching is attained, i.e. kð1Þp ¼ kð1Þs ¼ k
ð1Þ
i . In general, there are four such

points; two of these are {!zd1, 0} and {!zd2, 0}, indicated with blue circle markers in

Figure 1(a), (i.e. identical pump, signal and idler frequencies, with either !p¼!zd1 or

!p¼!zd2). These two points are not phase-matched, except in the limit of zero pump

power. The other two FGVM points are within each of the two PM loops, as illustrated

with red square markers in Figure 1(a), and are therefore typically not phase-matched.
We will refer to the pump frequency at which this second set of FGVM points occur as

!GVM; in Figure 1(a) this frequency is marked by the red dash-dot line. It is shown in

Figure 1(c), which shows a plot of k(1) versus �s0¼!�!GVM, that the signal and idler

frequencies corresponding to !p¼!GVM indeed lead to kð1Þs ¼ k
ð1Þ
i ¼ kð1Þp . In what follows,

we study methods for achieving phase-matched full GVM, and discuss the result of this on

the two-photon state.
Let us concentrate on the two FGVM points at !p¼!GVM (see Figure 1). For most

source geometries, these points are not phase-matched, since they occur within the PM

loops. Here, we will explore two methods which lead to phase-matching at these points.

As we will see, in a realistic source design these two methods are most effective when used

in conjunction, though each one is in principle independently capable of yielding photon
pairs characterized by full GVM. Two of the FGVM points are directly linked to the

ZDFs, which as is well known exhibit a strong dependence on the fiber core radius. In fact,

the location of all four FGVM points can be varied through changes in the fiber core

radius. In general terms, if the waveguide contribution to the dispersion is sufficiently

strong relative to the material contribution (i.e. if there is a strong nucleus-cladding

dielectric contrast), then more than one ZDF may exist, two of which may approach each
other for certain core radii. This behavior is illustrated in Figure 2(a), which shows for

a SIF with a fused silica cladding and a core such that the index contrast is �n¼ (nco� ncl)/

nco¼ 0.0274 (nco/ncl are the core/cladding indices of refraction), k(2) plotted as a function

of ! for different core radii r. For 1.643 mm5 r5 1.665 mm, three ZDFs exist, where

the two higher ones become degenerate at r¼ 1.643mm. For the core radius at which the
two higher ZDFs merge, the resulting degenerate ZDF fulfils k(2)¼ k(3)¼ 0. Also, in this

case the four FGVM points merge into a single point. Note that a further reduction of the

core radius leads to the suppression of PM. A fiber with two degenerate ZDFs at !zd,

pumped at !zd, leads to the generation of photon pairs characterized by full GVM,

centered also at !zd.
Alternatively, it is possible to exploit the self/cross-phase modulation contribution to

achieve PM at the two !p¼!GVM FGVM points. As has already been mentioned,
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the shape of the PM loops exhibits a dependence on the pump power P. At small power
levels, this effect manifests itself as the appearance of symmetric sidebands, detuned by
�(2�P/jk(2)j)1/2 from the pump frequency [13]; in contrast, the effect on the outer
portions of the PM loops tends to be comparatively weaker. For example, in Figure 1(a),
the effect of self/cross-phase modulation is only apparent in the inner loop. Thus, for
small power levels, the PM loop splits into two separate loops. However, for sufficiently
large pump power levels, the entire PM loops, including the outer areas, shrink.
At a specific power level, the two PM loops become each a single point, which in fact
corresponds to each of the two !p¼!GVM FGVM points. Note that increasing the
power further beyond this value suppresses PM. This is illustrated in Figure 2(b), where
we show for a fiber with index contrast �n¼ 0.0274, and core radius r¼ 1.644mm the
PM loops resulting for five different pump power levels (P1¼ 0.10W, P2¼ 0.40W,
P3¼ 0.70W, P4¼ 0.90W, P5¼ 0.95W). Power level P¼P5 corresponds to that for
which the PM loops become point-like. Thus, a pump centered at !GVM with the
specific pump power leading to point-like PM loops, produces photon pairs
characterized by full GVM.

What are the properties of photon pairs characterized by full GVM? On the one hand,
as is clear from the discussion above, PM is achieved at individual points (in {!p,�}
space). On the other hand, because the normally-dominant first-order terms in the phase
mismatch (see Equation (7)) are suppressed, �k grows only weakly, as governed by
second-order terms, away from the points where perfect PM is achieved (and which
correspond to FGVM points). This can translate into a large area in generated versus
pump frequencies space where essentially perfect phase-matching is attained. Thus, for
a given pump frequency, broadband SFWM is generated, and in addition the pump
frequency may be varied over a large spectral interval maintaining broadband SFWM
photon-pair generation. Figure 3 illustrates this behavior, for a fused-silica SIF of length
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Figure 2. (a) k(2) versus ! for different core radii r; we have assumed a fused-silica step-index fibre
with �n¼ 0.0274. (b) Phase-matching contours for different pump power levels (assuming �n¼

0.0274 and r¼ 1.644mm, power in W indicated within black squares); for P¼ 0.95 W the PM loops
become point-like. (The color version of this figure is included in the online version of the journal.)
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L¼ 50 cm with an index-contrast of �n¼ 0.0274. Figure 3(a) shows a phase-matching
diagram, plotted in {!p,�} space, where for a monochromatic pump centered at !p

(horizontal axis) we have computed the resulting singles spectrum S(!)¼
sinc2[L�kcw(!, 2!p�!)/2]. We have selected a fiber radius, r¼ 1.644mm (as in
Figure 2(b)), for which (see Figure 2(a)) the two ZDFs are nearly coincident, and for
which the PM loops shrink down to the FGVM points through the self/cross-phase
modulation contribution. Thus, we have relied on a mixture of the two mechanisms above
to obtain phase-matched FGVM. On the one hand, the first mechanism discussed (based
on choosing the core radius) leads to the merging of the four FGVM points, and a realistic
pump power level suppresses PM. On the other hand, the second mechanism discussed
(based on choosing the pump power level) tends to require large power levels to close
down the loops. By making the loops small (for nearly coincident ZDFs), only a relatively
small power level is required for the PM loops to become single points. This is the situation
presented in Figure 3(a), where we have assumed a pump power of P¼ 0.9496W.
The experimental implementation of these PM techniques necessitates an optical fiber with
suitable dispersion properties. In the case of photonic crystal fiber and SIF with the
appropriate core-cladding dielectric contrast, the required core radius can be reliably
obtained through existing tapering techniques [14–16].

In Figure 3(a) we have indicated the location of the four FGVM points. Perfect PM is
achieved in the two !p¼!GVM FGVM points (red square markers in the figure). Note that
the PM bandwidth is remarkably broad; the phase-matched areas around these two points
merge into a single, broad region, shown in white, characterized by nearly-perfect PM.
Figure 3(b) shows, for !p¼!GVM (with �GVM¼ 2
c/!GVM¼ 1552.1 nm), the resulting
SFWM singles spectrum, with a full width at half maximum bandwidth of
��max¼ 415.6 nm. An indication of the large pump bandwidth is that the pump
wavelength may be varied between 1436.0 nm and 1750.0 nm, maintaining a generated
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Figure 3. (a) PM function for a step-index fiber of length L¼ 50 cm (with the other parameters as in
Figure 2(b)). Perfect PM is achieved in the two FGVM points which occur at �GVM¼ 2
c/
!GVM¼ 1552.1 nm (red square markers); the blue circle markers indicate the other two FGVM
points. (b) SFWM singles spectrum for !p¼!GVM. (The color version of this figure is included in the
online version of the journal.)
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SFWM bandwidth of �����max/2. A possible application for a source with these

characteristics, is a broadband parametric amplifier [17]. Indeed, with a phase-matched

region such as that shown in Figure 3, the central frequencies for both the pump !p and

the seed !s, to be amplified, could be chosen so that {!p,!s} is anywhere within the white

area. Such an amplifier would exhibit a constant level of noise within the phase-matched

area resulting from SFWM, i.e. without spectral structure. In addition, full GVM leads to

the important property that the amplified seed does not develop additional spectral

structure [18]. Note that in [19] we have presented an alternative recipe for ultra-

broadband SFWM generation based on controlling higher-order dispersive terms. This

technique (from [19]) permits an even wider generation bandwidth as compared to the

technique presented here at the cost, however, of a greatly reduced pump bandwidth, i.e.

for the technique from [19], the PM region in a diagram similar to Figure 3(a) would be

wider vertically, and much narrower horizontally.

4. Generation of nearly-factorable photon pairs

As has already been pointed out, for FWM sources exhibiting full GVM, while perfect PM

occurs at isolated points (e.g. in {!p,�} space), �k increases only slowly away from these

points. In the previous section we exploited this weak spectral dependence of �k to design

a source which permits a remarkably broad generation bandwidth, over a wide range of

pump frequencies. In this section, we exploit the fact that perfect PM occurs at isolated

points to design relatively narrowband photon pair sources, where in addition by imposing

a certain condition on the second-order dispersion coefficients it becomes possible to

approach factorability. For sufficiently narrowband photon pairs, the description in terms

of Equations (5) and (6) becomes valid. Note that Z(�s, �i) (see Equation (6)) is

independent of the fiber length L; the only dependence on L is through parameter C0. The

effect of increasing C0 (which depends linearly on L) is to decrease the spectral width of the

PM function. Thus, for sufficiently long fibers, the phase-matched region in {!p,�} space

becomes localized around the points which yield perfect PM. If the core radius and power

level are chosen so that perfect PM occurs at the two !p¼!GVM FGVM points, then on

the one hand, �k(0)¼ 0 and, on the other hand, 
ð1Þs ¼ 

ð1Þ
i ¼ 0. Under these conditions,

from Equations (6) and (7) we can show that the phase-matched regions become circular

(i.e. the contours Z(�s, �i)¼ constant become circles) if the condition 
ð2Þs ¼ 

ð2Þ
i � 
ð2Þp is

satisfied.
If this condition is satisfied, then for a sufficiently broad pump bandwidth (so that

the joint amplitude is determined solely by function �(!s,!i); see text before Equation (5)),

the two photon state becomes factorable. The technique outlined here for the generation

of factorable photon pairs presents some significant advantages over the techniques

presented in [12]. Indeed, an important practical difference is that in the techniques

presented earlier, it is essential to select a particular fiber length for a given pump

bandwidth. Thus, increasing the fiber length, e.g. in order to increase the source

brightness, would lead to the need for a simultaneous reduction of the pump bandwidth

so as to maintain factorability. In the technique presented here, increasing the fiber

length (while maintaining the pump bandwidth constant) has the effect of reducing the
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generation bandwidth, while maintaining factorability. The resulting decoupling of fiber
length and pump bandwidth significantly enhances the experimental flexibility of this
type of source. Furthermore, note that it becomes possible to obtain increasingly
narrowband and high-flux nearly-factorable photon pair generation (in principle without
limit) by increasing the fiber length. Indeed, we believe that this source could be well
suited for experiments intended to generate multiple pairs simultaneously, through
a large parametric gain [20].

The fulfilment of condition 
ð2Þs ¼ 

ð2Þ
i � 
ð2Þp is facilitated if k(2) exhibits a strong

dependence on frequency. This translates into the need for relatively large higher-order
dispersive terms, which is made possible by a fiber with a strong waveguide dispersion,
i.e. with a strong nucleus-cladding dielectric contrast [21–23]. In Figure 4 we illustrate
the design of a nearly-factorable photon pair source based on these ideas. We have
assumed a fiber composed of an air-guided bismuth borate glass rod with radius
r¼ 0.205mm; the combination of a particularly high-index glass and air guiding leads to
a remarkably large dielectric contrast. The fiber radius is chosen so that the two ZDFs
are in relative proximity, with �zd1¼ 2
c/!zd1¼ 616.2 nm and �zd2¼ 2
c/!zd2¼ 641.7 nm.
The pump frequency must coincide with !GVM (with �GVM¼ 2
c/!GVM¼ 628.5 nm),
while the FWHM pump bandwidth, ��¼ 6.29 nm, is large enough that the two-photon
state is fully determined by the function �(!s,!i). The fiber length, L¼ 100 m, is chosen
so as to restrict the emission bandwidth (to around 1.2 nm FWHM). Finally, the pump
power, P¼ 9.75 W, is chosen so that the PM loops become point-like (at �s0¼ 2
c/
!s0¼ 607.2 nm and �i0¼ 2
c/!i0¼ 651.3 nm) [see also Figure 2(b)]; we have assumed
a nonlinear coefficient of � ¼ 550W�1km�1. Figure 4 shows, plotted as a function of the
signal and idler frequencies: the pump envelope function �(!s,!i) in panel (a), the phase-
matching function j�(!s,!i)j in panel (b), the joint spectral intensity (JSI)
j�(!s,!i)�(!s,!i)j

2 in panel (c), and the JSI obtained through numerical integration of
Equation (2) in panel (d). It is evident from the figure that the agreement between the
analytic and numerical calculations is excellent. Figures 4(c) and (d) show that the
resulting two-photon state is essentially factorable; the detection of an idler photon
would herald a single photon in the signal mode with purity P ¼ Trð�2s Þ ¼ 0:88 (where �s
is the reduced density operator of the signal mode).

0.6086 0.6072 0.6058 0.6086 0.6072 0.6058
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13
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64

97
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)

(a) (b) (c) (d)
0.6086 0.6072 0.6058 0.6086 0.6072 0.6058

λs (μm)  λs (μm)

Figure 4. Joint spectral intensity (JSI) for an air-guided bismuth borate glass rod, for which PM is
attained at the two !p¼!GVM FGVM points. (a) Pump envelope function �(�s, �i). (b) Phase-
matching function �(�s, �i). (c) Analytic JSI, from Equations (5) to (7). (d) JSI obtained by numerical
integration of Equation (2). (The color version of this figure is included in the online version of the
journal.)
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5. Conclusions

We have analyzed the spectral properties of two-photon states produced by spontaneous

four-wave mixing (SFWM) in a single mode optical fiber and in the degenerate-pumps

regime, focusing our attention on fibers with more than one zero dispersion frequency

(ZDF). We have explored the conditions under which we expect SFWM photon pair

generation characterized by full group velocity matching (GVM), i.e. where the pump,

signal and idler propagate at identical group velocities. We have presented two routes to

phase-matched full GVM, one based on engineering the fiber to have coincident ZDFs,

and the other based on the self/cross-phase modulation term; these two methods are most

effectively used together. We have explored the consequences of full GVM, when satisfied

together with phase-matching (PM), on the two-photon spectral properties. We have

shown that for a source with these characteristics, while perfect PM occurs at isolated

pump and generated frequencies, because the phase-mismatch grows only slowly from

these points, we obtain a very large pump and signal/idler bandwidth over which

essentially perfect PM is obeyed. Thus, it becomes possible to generate broadband SFWM

photon pairs, for a large range of pump frequencies. Likewise, we have shown that, using

long fibers which satisfy the condition 
ð2Þs ¼ 

ð2Þ
i � 
ð2Þp on the second-order dispersion

coefficients, we can exploit the fact that perfect PM occurs at isolated frequencies to obtain

relatively narrowband, nearly-factorable two-photon states. We expect that these results

will be useful for the practical implementation of fiber-based photon pair sources for

quantum information processing applications.

Acknowledgements

KGP and RRR acknowledge support from CONACYT through project 46492; ABU acknowledges
support from CONACYT through project 46370.

References

[1] Fiorentino, M.; Voss, P.L.; Sharping, J.E.; Kumar, P. IEEE Photon. Technol. Lett. 2002, 14,

983–985.

[2] Rarity, J.G.; Fulconis, J.; Duligall, J.; Wadsworth, W.J.; Russell, P.St.J. Opt. Express. 2005, 13,

534–544.

[3] Fan, J.; Migdall, A. Opt. Express. 2005, 13, 5777–5782.
[4] U’Ren, A.B.; Silberhorn, Ch.; Erdmann, R.; Banaszek, K.; Grice, W.P.; Walmsley, I.A.;

Raymer, M.G. Las. Phys. 2005, 15, 146–161.
[5] Zhang, L.; U’Ren, A.B.; Erdmann, R.; O’Donnell, K.A.; Silberhorn, Ch.; Banaszek, K.;

Walmsley, I.A. J. Mod. Opt. 2007, 54, 707–719.
[6] O’Donnell, K.A.; U’Ren, A.B. Opt. Lett. 2007, 32, 817–819.
[7] Dayan, B.; Pe’er, A.; Friesem, A.A.; Silberberg, Y. Phys. Rev. Lett. 2004, 93, 023005-1–4.

[8] Molotkov, S.N. JETP Lett. 1998, 68, 263–270.
[9] Nasr, M.B.; Saleh, B.E.A.; Sergienko, A.V.; Teich, M.C. Phys. Rev. Lett. 2003, 91, 083601-1–4.
[10] Grice, W.P.; U’Ren, A.B.; Walmsley, I.A. Phys. Rev. A 2001, 64, 063815.
[11] Mosley, P.J.; Lundeen, J.S.; Smith, B.J.; Wasylczyk, P.; U’Ren, A.B.; Silberhorn, Ch. Phys. Rev.

Lett. 2008, 100, 133601.

3130 K. Garay-Palmett et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
N
A
M
 
-
 
C
C
A
D
E
T
]
 
A
t
:
 
1
2
:
5
9
 
1
1
 
D
e
c
e
m
b
e
r
 
2
0
0
8



[12] Garay-Palmett, K.; McGuinness, H.J.; Cohen, O.; Lundeen, J.S.; Rangel-Rojo, R.; U’Ren, A.B.;
Raymer, M.G.; McKinstrie, C.J.; Radic, S.; Walmsley, I.A. Opt. Express. 2007, 15,
14870–14886.

[13] Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Elsevier: Amsterdam, 2007.

[14] Wadsworth, W.J.; Ortigosa-Blanch, A.; Knight, J.C.; Birks, T.A.; Man, T.-P.M.; Russell, P.S.J.
J. Opt. Soc. Am. B 2002, 19, 2148–2155.

[15] Brambilla, G.; Koizumi, F.; Feng, X.; Richardson, D.J. Electron. Lett. 2005, 41, 400–402.

[16] Foster, M.A.; Turner, A.C.; Lipson, M.; Gaeta, A.L. Opt. Express. 2008, 16, 1300–1320.
[17] Radic, S.; McKinstrie, C.J.; Jopson, R.M.; Centanni, J.C.; Lin, Q.; Agrawal, G.P. Electron.

Lett. 2003, 39, 838–839.

[18] Brainis, E.; Amans, D.; Massar, S. Phys. Rev. A 2005, 71, 023808.
[19] Garay-Palmett, K.; U’Ren, A.B.; Rangel-Rojo, R.; Evans, R.; Camacho-López, S. Phys. Rev. A
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