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We present a study of the effects of dispersion on the properties of photon pairs generated by type-II
collinear spontaneous parametric down-conversion. Specifically, we take into consideration the effects of a
chirped pump, as well as of dispersive propagation of the photon pairs. We present expressions for the joint
amplitude both in the spectral and temporal domains, as well as for the chronocyclic Wigner function of
heralded single photons, which fully characterizes the single-photon spectral �temporal� properties. On the one
hand, we show that unwanted effects of pump chirp in terms of the heralded single-photon duration can be
suppressed for states designed to be factorable and spectrally elongated. On the other hand, we show that pump
chirp constitutes an effective tool for the control of the degree of photon-pair entanglement. We show that
when frequency-entangled photon pairs propagate through a dispersive medium, entanglement can “migrate”
between the modulus and phase of the joint temporal amplitude.
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I. INTRODUCTION

The ability to generate two-photon states with specific
properties is essential for quantum information processing
applications. Specifically, it has been determined that fac-
torability is required for heralding of pure single photons �1�,
a crucial ingredient for quantum computation with linear op-
tics �2�. In previous work, various recipes have been pro-
posed, some of which have been demonstrated experimen-
tally, for the generation of factorable photon pairs through
spontaneous parametric processes �3–11�. In particular, in a
recent experiment, we have demonstrated the effectiveness
of asymmetric group-velocity matching for the preparation
of factorable two-photon states and hence of heralded single
photons with a high degree of purity �11,12�. In this experi-
ment we have exploited the concept of engineering the pho-
ton pairs at the source so as to avoid the need for filtering,
thus achieving a high flux of factorable photon pairs. This
scheme and similar ones have one aspect in common: they
require a broadband pump, often one in the form of a train of
femtosecond-duration pulses. Indeed, a monochromatic
pump precludes factorability, leading to a state with a high
degree of spectral entanglement. As is also the case with
classical optics, the use of femtosecond-duration pulses,
greatly increases the vulnerability to dispersive effects. Natu-
rally, dispersion leads to a significant effect on the resulting
photon-pair properties. It is crucial to understand this effect
for the design and implementation of photon-pair sources
tailored for quantum information processing applications. In
this paper we present a comprehensive study of the effects of
dispersion, in particular of second-order dispersion, on the
properties of photon pairs generated by type-II collinear
parametric down-conversion �PDC�. We include in our treat-
ment the effects of both: a quadratically chirped pump and
propagation of the signal and idler photons through a me-
dium with second-order dispersion.

Previous work has analyzed some aspects of dispersive
effects on photon pairs generated by parametric down-
conversion. Thus, for spectrally anticorrelated photon pairs it
has been demonstrated that �i� the correlation time remains
unaffected if the signal and idler photons propagate through
separate dispersive media characterized by opposite-signed
quadratic dispersion �13� and �ii� the shape of the Hong-Ou-
Mandel interference dip is immune to quadratic dispersion
experienced by one of the generated photons �14�. The latter
effect has been proposed as the basis for a quantum optical
coherence tomography scheme which benefits from disper-
sion cancellation �15�. The temporal broadening of photon
pairs due to dispersion which underpins these effects has
been directly observed �16�. Recently, nonlocal temporal
shaping of the signal photon through chirping of the idler
photon has been demonstrated �17,18�. The above results
rely on a monochromatic pump and therefore do not consider
or exploit chirp in the pump beam. In Ref. �19�, it was shown
that two-photon states with positive spectral correlations,
produced by a broadband pump, can be immune to disper-
sion, to all orders.

In the present paper we analyze the interplay of an ul-
trashort quadratically chirped pump with quadratic disper-
sion experienced by the signal and idler photons generated
by the process of type-II collinear PDC. Our motivation for
this work is to analyze the various dispersive effects which
may be relevant in the design of specific sources of photon
pairs for quantum information processing applications. We
derive expressions for the resulting joint amplitude, both in
the spectral and temporal domains, explicitly including the
effects of dispersion. On the one hand, we show that the
negative influence of pump chirp in terms of the attainable
heralded single-photon temporal duration can be reduced, or
even eliminated, through a dispersion suppression effect
which occurs for a state designed to be factorable and spec-
trally elongated. On the other hand, we show that pump chirp
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can in fact be a powerful tool for controlling entanglement in
photon pairs. We study the relationships among �i� the degree
of entanglement, �ii� the heralded single-photon purity, and
�iii� the expected Hong-Ou-Mandel interference between two
photons generated in different crystals. We study the spectral
�temporal� properties of heralded single photons. Finally, we
discuss an effect which occurs during propagation of the
PDC photons through a dispersive medium by which en-
tanglement can migrate between the modulus and the phase
of the joint amplitude.

II. TWO-PHOTON STATE FOR TYPE-II PDC UNDER
THE EFFECTS OF DISPERSION

In this paper we study the spectral �temporal� properties
of photon pairs produced by spontaneous PDC pumped by a
train of ultrashort pulses in cases where the pump, signal,
and idler fields experience dispersion. In particular, we study
the effects on the two-photon state of �i� quadratic chirp in
the pump pulses �e.g., due to a dispersive element prior to
the crystal� and �ii� propagation of the two photon states after
exiting the crystal through a medium with quadratic chirp,
such as a fiber. Throughout this paper, we refer to dispersion
introduced by optical elements prior and following the crys-
tal, i.e., excluding dispersion introduced by the crystal itself,
as external dispersion. We will concentrate our discussion on
collinear type-II �with the signal and idler photons orthogo-
nally polarized� and frequency degenerate parametric down-
conversion.

Following a standard perturbative approach, the two-
photon state produced can be written as

��� = �vac� + �� d�s� d�i f��i,�s���s�s��i�i, �1�

where we have assumed that the two-photon state is spatially
filtered so that only those k vectors which are parallel to the
pump direction of propagation are retained. Here, ����

= â�
† ����vac� �with �= i ,s�, �vac� is the vacuum, f��i ,�s�

represents the joint spectral amplitude �JSA�, and � is a con-
stant related to the conversion efficiency. In the presence of
dispersion in addition to spectral filters on the paths of the
signal and idler modes, the JSA can be written as

f��i,�s� = ���i,�s����i + �s�D��i,�s�Fi��i�Fs��s� ,

�2�

where ���i ,�s� denotes the phase matching function �PMF�,
���i+�s� represents the pump spectral envelope function
�PEF�, D��i ,�s� describes a phase term associated with ex-
ternal dispersion, and F���� �with �= i ,s� describes a spec-
tral filter acting on each of the signal and idler modes.

The phase matching function can be shown to be given by

���i,�s� = sinc�L�k��i,�s�/2�exp�iL�k��i,�s�/2� , �3�

in terms of the phase mismatch �k��i ,�s�=kp��s+�i�
−ks��s�−ki��i� and the crystal length L. In this work we rely
both on numerical calculations, taking into account disper-
sion to all orders, as well as on analytical expressions based
on a Taylor series description of the phase mismatch. In the

latter case, we can write the phase mismatch as a function of
the frequency detunings ��=��−�c �with �=s , i� as

L�k��i,�s� � L�k�0� + 	i�i + 	s�s + bs�s
2 + bi�i

2 + bp�s�i,

�4�

where perfect phase matching is attained at �i=�s=�c, �k�0�

is the constant term in the series �which we assume to van-
ish� and in terms of the following definitions:

	� = L�kp��2�c� − k�� ��c�� , �5�

b� =
L

2
�kp��2�c� − k�� ��c�� , �6�

bp = Lkp��2�c� . �7�

Here, 	� �with �=s , i� represents a group-velocity mis-
match coefficient between the pump and the signal-idler
fields, while bp,s,i represent group-velocity dispersion �GVD�
coefficients involving the pump, signal, and idler frequen-
cies.

The broadband pump is described by the spectral enve-
lope function ����, which we model as a Gaussian function
with bandwidth 
,

���s + �i� = exp�− ��s + �i�2/
2� . �8�

Likewise, function F���� �with �=s , i� is modeled as a
Gaussian function with width 
F, i.e., F����=exp�−�2 /
F

2�.
By neglecting cubic and higher-order dispersive terms, and
also neglecting linear dispersive terms �which result in a
temporal shift without otherwise modifying the two-photon
properties�, we can express function D��i ,�s� as

D��i,�s� = exp�i�p��i + �s�2�exp�i�i�i
2�exp�i�s�s

2� �9�

in terms of the GVD parameters �� �with �= p ,s , i�. If these
� coefficients are due to propagation through a dispersive
medium of length �� and characterized by wave number
����� �placed prior to the crystal in the case of the pump and
following the crystal in the case of the generated photons�,
then ��=����� /2, where � denotes a second frequency de-
rivative, evaluated at �c for PDC light and at 2�c for the
pump. Throughout this paper we employ a temporal descrip-
tion of the two-photon state, based on the joint temporal
amplitude �JTA� function f̃�ti , ts�, obtained as the two-
dimensional Fourier transform of the JSA �see Eq. �2��. In
terms of the JTA we may write down the two-photon state as

��� = �vac� + �� dts� dti f̃�ti,ts��ts�s�ti�i, �10�

where �t��= ã�
† �t��vac�, defined in terms of the time-domain

annihilation operators

ã��t� =� d�â����e−i�t. �11�

In order to calculate the JTA analytically we use the
power-series description of the phase mismatch �see Eq. �4��
up to first-order terms. We also neglect the phase term in the
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phase matching function �see Eq. �3��, which is justified in
many of the cases to be analyzed in this paper for which
external dispersion dominates over dispersion introduced by
the crystal. The resulting expression is as follows

f̃�ti,ts� = Nt exp	− C2�ti,ts� +
C1�ti,ts�2

4C0



 �erf	 1

2�C0

�C1�ti,ts� + 2C0�

− erf	 1

2�C0

�C1�ti,ts� − 2C0�
 , �12�

where Nt is a normalization constant, in terms of the follow-
ing definitions:

C0 = −
T̃ss

2 	i
2 − 2T̃si

2 	i	s + T̃ii
2	s

2

16�T̃si
4 − T̃ii

2T̃ss
2 �

,

C1�ti,ts� = −
ts�T̃ii

2	s − T̃si
2 	i� + ti�T̃ss

2 	i − T̃si
2 	s�

4�T̃si
4 − T̃ii

2T̃ss
2 �

,

C2�ti,ts� = −
T̃ss

2 ti
2 − 2T̃si

2 tits + T̃ii
2ts

2

4�T̃si
4 − T̃ii

2T̃ss
2 �

. �13�

Here, we have defined parameters T̃��
2 �with � ,�=s , i� in

terms of their real and imaginary parts,

T̃��,R
2 = ���/
F

2 + 1/
2,

T̃��,I
2 = − ��p + ������ , �14�

where ��� represents a Kronecker delta. A similar expres-
sion, for the case without external dispersion, has been pre-
sented in �20�. We also present expressions for the joint am-
plitude, both in the spectral and temporal domains, based on
a Gaussian approximation for the sinc function in the phase
matching function. Clearly, this approximation ignores the
sidelobes associated with the sinc function and leads to
slightly different spectral properties even near perfect phase
matching, compared to the full calculation. However, the re-
sulting joint amplitude expressions capture the essential
physics of the two-photon state and can be exploited for the
derivation of analytic expressions for the following: �i�
Hong-Ou-Mandel interferogram, relying on two indepen-
dently generated heralded single photons �Sec. III�, �ii� Chro-
nocyclic Wigner function for heralded single photons �Sec.
V�, and �iii� Schmidt decomposition of the modulus of the
joint temporal amplitude �Sec. VII�. Thus, by approximating
sinc�x��exp�−�x2�, with ��0.193 �this value is selected so
that the two functions have identical full widths at half maxi-
mum �FWHMs��, we can write down the JSA as

f��i,�s� = N� exp�− �Tii
2�i

2 + Tss
2 �s

2 + 2Tsi
2 �i�s�� . �15�

Here, N� is a normalization constant, and parameters T��
2

�with � ,�=s , i� are similar to parameters T̃��
2 , with an addi-

tional term in their real parts,

T��,R
2 = T̃��,R

2 + �	�	�/4,

T��,I
2 = T̃��,I

2 . �16�

The corresponding expression for the JTA is as follows

f̃�ti,ts� = Nt exp��s
2ti

2 + �i
2ts

2 − 2�si
2 tits� , �17�

where Nt is a normalization constant and where we have
defined the parameters �� with �= i ,s and �si as

��
2 =

T��
2

4�Tsi
4 − Tii

2Tss
2 �

, �18�

�si
2 =

Tsi
2

4�Tsi
4 − Tii

2Tss
2 �

. �19�

If the joint amplitude is normalized so that
�d�s�d�i�f��i ,�s��2=1, �f��i ,�s��2 represents a joint probabil-
ity distribution for the emission of photon pairs with fre-
quency detunings �s and �i. We refer to �f��i ,�s��2 as the joint
spectral intensity or the joint spectrum. It is convenient
to define, for later use, a correlation coefficient �
=−
si

2 / �
s
i�, where 
si
2 represents the covariance associated

with this probability distribution and 
� �with �=s , i� repre-
sents the standard deviation for each of the two marginal
distributions. The correlation coefficient is constrained to
take values within the range −1���1; in terms of the pa-
rameters defined in Eq. �14�, the correlation coefficient is
given by

� =
Tsi,R

2

�Tss,R
2 Tii,R

2 �1/2 . �20�

An important class of two-photon states is composed of
those which are unentangled or factorable. For these states,
functions S��� and I��� exist such that the JSA may be ex-
pressed as f��i ,�s�=S��i�I��s�. Factorable states are re-
quired for heralding of pure single photons. In previous
work, it has been shown that in cases where a symmetric
group-velocity matching �GVM� condition is fulfilled �3,21�,
symmetric and factorable two-photon states, with a round
joint spectrum, are possible. Likewise, it has been shown that
in cases where an asymmetric group-velocity matching con-
dition is fulfilled, factorable states with an elongated joint
spectrum are possible.

For the asymmetric group-velocity matching case where
kp�=ks� or 	s=0 �i.e., where the pump and signal photons have
identical group velocities�, the general expression for the
joint temporal intensity �JTI� �see Eq. �12�� may be shown to
reduce to

� f̃�ti,ts��2 = Na exp	−
ts
2
2

2�1 + �p
2
4�
rect�−

	i

2
,
	i

2
;ts − ti� ,

�21�

where Na is a normalization constant. See the Appendix for a
definition of the rect function and for more details on how
the general form of the joint temporal amplitude �see Eq.
�12�� simplifies for particular cases.
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Throughout this paper we will refer, as an example of
interest, to factorable and spectrally elongated two-photon
states obtained by asymmetric GVM. Another, related, cat-
egory of state is that of factorable, symmetric two-photon
states obtained by symmetric GVM. In Fig. 1 we present, for
illustration and future reference, the joint spectral intensity as
well as the joint temporal intensity for specific examples of
these two categories of source, in the absence of external
dispersion; later figures explore the effect of external disper-
sion. These plots are derived from numerical calculations,
taking into account the full two-photon state with dispersion
to all orders �see Eq. �2��. In the case of the factorable asym-
metric state we have assumed a pump in the form of an
ultrashort pulse train centered at 415 nm with a FWHM
bandwidth of 5 nm �which corresponds to 
=4.65
1013 rad s−1�. Likewise, we have assumed a 2-cm-long po-
tassium dihydrogen phosphate �KDP� crystal with a cut
angle of �pm=67.8°, chosen for type-II collinear degenerate
phase matching. In the case of the factorable symmetric state
we have assumed a pump in the form of an ultrashort pulse
train centered at 757 nm with a FWHM bandwidth of 15 nm
�which corresponds to 
=4.191013 rad s−1�. Likewise, we
have assumed a 2.29-mm-long � barium borate �BBO� crys-
tal with a cut angle of �pm=28.8°, chosen for type-II collin-
ear degenerate phase matching.

III. ENTANGLEMENT AND SINGLE-PHOTON PURITY

One way to characterize the spectral �temporal� properties
of photon pairs is through their interference properties. Two
photons interfere in a Hong-Ou-Mandel interferometer
�HOMI� with perfect visibility if they are indistinguishable.

In the case where the two photons come from the same
source �see Fig. 2�a��, indistinguishability leads to the re-
quirement that the joint amplitude be symmetric. In the
present analysis, where we concentrate on the spectral degree
of freedom, this means specifically that f��i ,�s�= f��s ,�i�.
In the case where the two interfering single photons are her-
alded from independent sources, indistinguishability leads to
the requirement that the joint amplitude be factorable. Con-
cretely, we assume the experimental situation depicted in
Fig. 2�b�, where two single-heralded photons each in the
signal mode of two identical sources, are made to interfere at
a beam splitter. We assume that the joint spectral amplitude
functions for the two sources are given by the functions
f1��i ,�s� and f2��i ,�s�. In our analysis, let us begin with the
expression for the fourfold coincidence rate as a function of
the delay between the two interfering photons in the Hong-
Ou-Mandel interferometer �22�,

Rc�	� = 1 − �
0

�

d�1�
0

�

d�2�
0

�

d�3�
0

�

d�4f1��1,�2�

 f2��3,�4�f1
���1,�4�f2

���3,�2�ei��1−�3�	. �22�

Here, we have assumed that each of the joint amplitude
functions is normalized. Subscripts 1–4 in the above expres-
sion refer to each of the similarly labeled paths in Fig. 2.
Assuming that the minimum coincidence rate �i.e., the lowest
point in the interference dip� occurs at zero delay, the inter-
ference visibility V, defined as the depth of the dip normal-
ized by the background coincidence rate, is given by

V = 1 − Rc�0�

= �
0

�

d��
0

�

d���s1��,����s2���,��

= Tr��̂s1�̂s2� . �23�

λ (µm)
1.431.5141.6

1.
43

1.
51

4
1.

6

i

λ
(µ

m
)

s

(c)

t (ps)

t
(p

s)

0.2 0.40-0.2-0.4-0
.4

0
0.

4
0.

2
-0

.2

i

s
(d)

λ (µm)
0.8270.830.833

0.
81

0.
83

0.
85

i

λ
(µ

m
)

s
(a)

t (ps)

t
(p

s)

1 20-1-2-0
.6

0
0.

6
0.

3
-0

.3

i

s

(b)

FIG. 1. �a� Joint spectral intensity for a nearly factorable two-
photon-pair source, which fulfills asymmetric group-velocity
matching �based on a KDP crystal�. �b� Corresponding joint tempo-
ral intensity. �c� Joint spectral intensity for a nearly factorable two-
photon-pair source, which fulfills symmetric group-velocity match-
ing �based on a BBO crystal�. �d� Corresponding joint temporal
intensity.
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FIG. 2. �Color online� Schematic diagrams for the single-source
�panel �a�� and double-source �panel �b�� Hong-Ou-Mandel interfer-
ometer setups. While these diagrams show, for graphical clarity,
PDC sources emitting into noncollinear signal and idler modes, all
calculations in our paper refer to type-II collinear sources where the
two modes can be distinguished by polarization rather than by op-
tical path.
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Here, we have defined the partial density operator �̂s� for
the interfering photon from each of the two sources ��
=1,2�, obtained by tracing over idler frequencies; the corre-
sponding matrix elements are

�s���,��� = ���Tri��̂������

= �
0

�

d�0f���0,��f�
� ��0,��� �24�

in terms of the two-photon density operators �̂�= ��������
and the partial trace over idler frequencies Tri. If we assume
that the two sources are in fact identical then, from Eq. �23�,
V=Tr��̂s

2� which represents the purity of the heralded, inter-
fering single photons. Therefore, from an experimental mea-
surement of the two-source Hong-Ou-Mandel interference
dip, we may infer the purity of the interfering single photons.

Let us now express the joint amplitudes �assumed to be
the same for both sources� in terms of a Schmidt decompo-
sition �23�,

f��i,�s� = �
n

��nun��i�vn��s� , �25�

where �n are the Schmidt eigenvalues and un��i� and vn��s�
are the Schmidt functions. Note that the Schmidt decompo-
sition can also be performed in the temporal domain, in
terms of the corresponding eigenvalues �n

�t� and temporal
Schmidt functions, un

�t��ti� and vn
�t��ts�,

f̃�ti,ts� = �
n

��n
�t�un

�t��ti�vn
�t��ts� . �26�

It is straightforward to show that the reduced density-
matrix elements can be expressed in terms of the spectral
Schmidt functions as

�s��,��� = �
n

�nvn���vn
����� , �27�

which in general represents a mixed state. Calculating the
visibility from Eq. �23�, assuming that both interfering
single-heralded photons are identical ��̂s1= �̂s2� �̂�, we can
furthermore show that

V = Tr��̂2� = �
n

�n
2 � K−1. �28�

Here we have exploited the orthogonality of the Schmidt
functions un���. As may be appreciated from Eq. �28�, the
HOMI visibility in the specific case where the two interfer-
ing photons are identical corresponds to reciprocal of the
Schmidt number K. �The Schmidt number K can be used to
quantify the degree of entanglement, while K=1 represents a
factorable, i.e., unentangled state, K�1 represents a highly
entangled state.� Therefore, according to Eq. �28�, from an
experimental measurement of the two-source Hong-Ou-
Mandel interference dip, we may likewise infer the degree of
entanglement of the two photon states. Let us note that in the
derivation of Eq. �28� we have assumed an ideal situation for
which possible experimental imperfections can be disre-
garded. In a realistic situation, Hong-Ou-Mandel interference
will be influenced by many experimental factors, with the

implication that it will no longer be possible to infer the
degree of entanglement from the HOMI visibility. In this
case, however, a lower bound for the single-photon purity or
an upper bound for the degree of entanglement �rather than
the actual values� can be inferred from the Hong-Ou-Mandel
measurement.

From the above discussion it is clear that the generation of
pure heralded single photons requires a source factorable
photon pairs, i.e., one for which there is a single term in the
sum of Eq. �25� �and therefore, also in the sum of Eq. �27��.

For the two-photon state expressed in terms of the phase
mismatch up to first order and in terms of the Gaussian ap-
proximation �see Eq. �15��, the fourfold coincidence rate for
the two-source HOMI arrangement is given by

Rc�	� = 1 − V exp�− 	2/�	2� �29�

in terms of the visibility V,

V = �Tii,R
2 Tss,R

2 − �Tsi,R
2 �2

�Tsi,I
2 �2 + Tii,R

2 Tss,R
2 �1/2

, �30�

and the dip temporal width �	,

�	2 = 4
�Tsi,I

2 �2 + Tii,R
2 Tss,R

2

Tii,R
2 . �31�

Note that according to Eq. �28�, there is a reciprocal rela-
tionship between V and K so that the Schmidt number may
be determined as K=1 /V from Eq. �30�. It may be seen that
the visibility reaches unity, as expected, if the mixed term
responsible for spectral entanglement Tsi

2 vanishes. Note that
while the dip shape �visibility and width� exhibits a depen-
dence on the pump chirp parameter, it is independent of the
dispersion experienced by the signal and idler photons after
exiting the crystal. This is as expected since the dip shape is
a signature of the type and degree of entanglement present,
which cannot change through lossless propagation of the sig-
nal and idler photons after exiting the crystal.

We illustrate this behavior in Fig. 3, in the context of a
factorable spectrally elongated source based on a KDP crys-
tal �with the same parameters as assumed for Fig. 1�a��. In
particular, we show the expected HOMI dip for four different
levels of pump chirp �see figure caption�. While the dips
shown in Fig. 3�a� were calculated numerically from the full
two-photon state, those in Fig. 3�b� were calculated through
the analytic expression in Eqs. �29�–�31�. In general terms,
the greater structure in the joint spectrum, e.g., derived from
the sinc function, in the full calculation results in lower vis-
ibilities compared to the approximate analytic calculation. As
expected, a larger degree of pump chirp leads to lower
HOMI visibilities, signaling a greater degree of entangle-
ment in the two-photon states. In particular, no pump chirp
leads to perfect visibility �according to the approximate cal-
culation� and to the highest attainable visibility �V=94%� in
the case of the full calculation.

In Sec. IV, we further explore the important relationship
between pump chirp and the resulting degree of entangle-
ment.
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IV. CONTROL OF ENTANGLEMENT:
USE OF A CHIRPED PUMP

The information pertaining to dispersion in the two-
photon state, as may be seen from Eqs. �2� and �9�, is con-
tained in phase terms. Note that the phase introduced by
propagation of the signal and idler photons through disper-
sive media is factorable into separate signal and idler contri-
butions and therefore does not contribute to entanglement. In
contrast, the phase term associated with a chirped pump
�e.g., due to transmission of the pump beam through a dis-
persive medium before reaching the crystal�, in general, can-
not be factored into signal and idler factors and therefore
does contribute to entanglement. This contribution of pump
chirp to entanglement in the spectral domain is necessarily in
the form of phase entanglement �24� and has no effect on the
joint spectral intensity. However, phase entanglement in the
spectral domain can, as we will discuss, translate into ex-
plicit correlations in the joint temporal intensity. Of course,
apart from external dispersion considered in this paper, other
experimental parameters such as crystal length and pump
bandwidth can have a profound effect on the resulting degree

of entanglement; these effects have been studied elsewhere
�see, for example, Refs. �3,20��.

The phase term due to pump chirp, linear in the sum of
frequencies �i+�s, in general manifests itself as an elonga-
tion of the joint temporal intensity along the direction given
by ti+ ts when plotted in the times of emission space �ti , ts�.
We illustrate the effect of pump chirp, presenting as an ex-
ample the case of nearly factorable two-photon states �in the
absence of pump chirp� obtained through asymmetric group-
velocity matching. In Fig. 4, we present the joint temporal
intensity expected for a KDP crystal, with the same param-
eters as assumed for Fig. 1�a�. In this case, the pump group
velocity equals that of the signal �ordinary-wave� photon.
Figure 4�a� shows a plot of the Gaussian term in Eq. �21� vs
the times of emission, ti and ts, assuming �p=0. Figure 4�b�
shows a corresponding plot of the rect function in Eq. �21�.
Figure 4�c� shows the joint temporal intensity � f̃�ti , ts��2 in the
case of no pump chirp, obtained from the product of the
functions plotted in the previous two panels. From Eq. �21�,
the effect of pump chirp becomes clear: the width of the
Gaussian function in Fig. 4�b� increases, thus revealing more
of the diagonal structure provided by the rect function in the
joint temporal intensity. This behavior is clear from Fig. 4�d�,
where we have plotted the JTI for a pump chirp parameter
�p=3.0410−27 s2 �corresponding to propagation through a
6 cm thickness of fused silica�.

The phase term in the phase matching function �see Eq.
�3��, which is not taken into account in the analytic expres-
sions of Sec. II �i.e., Eqs. �12� and �15��, in general can
contribute to the entanglement in the two-photon state. In-
deed, the mixed term proportional to �s�i in Eq. �4� leads to
a phase term in Eq. �15� which cannot be factored into signal
and idler contributions. This small effect can be graphically
appreciated by comparing Fig. 1�b�, which takes into account
numerically the crystal phase term in the JSA, with Fig. 4�c�
calculated analytically from Eq. �21�, which does not take
into account the crystal phase term in the JSA. We can see
that portions of the JTI involving higher values ti, emitted
near the second crystal face, involve a broader signal photon
relative to portions of the JTI involving lower values of ti.
This is a consequence of temporal elongation of the pump
pulse �which leads to a corresponding signal-mode temporal
elongation� as it propagates through the crystal. This intrac-
rystal dispersion and its effect on the resulting degree of
entanglement may be compensated for by pump chirp, in-
volving dispersion opposite in sign to that experienced by the
pump beam in the nonlinear crystal; this technique involving
making bp=−4�p �parameter bp defined in Eq. �7�� was dis-
cussed in Ref. �1�. In practice, however, the effect of the
dispersive phase associated with the crystal, on the degree of
entanglement tends to be small. For example, for the KDP
source discussed above, the value of the Schmidt number
drops from K=1.065 to K=1.061 under the effects of chirp
compensation.

In addition to the chirp compensation described above,
pump chirp can be used as an effective tool to control the
degree of entanglement in PDC two-photon sources. The ef-
fect of pump chirp on the JTI may be appreciated in Figs.
5�c� and 5�d�. As the pump chirp parameter is increased, the
correlations apparent in the JTI become more pronounced. If
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FIG. 3. �Color online� Fourth-fold coincidences �normalized to a
unit background� vs temporal delay between two separate heralded
single photons interfering through a Hong-Ou-Mandel interferom-
eter. These curves result from �a� a numerical simulation, based on
Eq. �22�, and �b� the analytic expression in Eq. �29�. The different
curves in each panel correspond to the following levels of pump
chirp: �i��p=0 �shown in red�, �ii� �p=1.1910−26 s2 �shown in
green�, �iii� �p=2.3910−26 s2 �shown in blue�, �iv� �p=3.58
10−26 s2 �shown in orange�, and �v� �p=4.7710−26 s2 �shown
in magenta�; in this family of curves, lower visibilities correspond
to higher levels of pump chirp.
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the two-photon state is factorable in the absence of disper-
sion and then by adding a controlled level of chirp to the
pump pulses �prior to the crystal�, it becomes possible to
generate two-photon states with an arbitrary degree of en-
tanglement determined by the pump chirp �p. In order to
illustrate this behavior, Fig. 5�a� shows, for a source similar
to that assumed for Fig. 1�b�, the Schmidt number calculated
numerically as a function of the pump chirp parameter �p
�where we have assumed no dispersion experienced by the
signal-idler photons�. We can see that the Schmidt number
exhibits a monotonically increasing dependence on the pump
chirp parameter. Figures 5�b�–5�d� show the JTI calculated
numerically for three different values of the pump chirp,
identified along the K vs �p plot in Fig. 5�a�. Of course,
according to Eq. �28�, a greater degree of entanglement as
quantified by K translates into a lower single-heralded pho-
ton purity and a lower visibility in a two-source HOMI ex-
periment as demanded by the conclusions of Sec. III.

The entanglement contributed to the photon pair by pump
chirp in general manifests itself in the form of modified tem-
poral correlations. In the specific case of Fig. 5, the strength
of temporal correlations increases monotonically with the
pump chirp parameter �p. These correlations may be quanti-
fied, for example, through the so-called Fedorov ratio �25�,
here defined in the temporal domain as

F =
�tS

�tC�t0�
, �32�

given in terms of �tC�t0� which represents the signal-mode
temporal width conditioned on a certain idler detection time
t0 and the unconditional signal-mode temporal width �tS.
Thus, while �tC�t0� is defined as the full width at half maxi-
mum of the function f i�ti�= �f�ti , t0��2 for fixed t0 selected to
maximize the probability of emission, �tS is defined as the
full width at half maximum of the marginal distribution
�dts�f�ti , ts��2. A numerical calculation of the Fedorov ratio
for the situations depicted in Figs. 5�b�–5�d� yields the val-
ues 1.06, 1.14, and 3.98, respectively.

V. SPECTRAL (TEMPORAL) PROPERTIES
OF HERALDED SINGLE PHOTONS

A key application of spontaneous PDC is the generation
of heralded single photons. Here we consider how the con-
tinuous variable entanglement properties of the photon pair
translate into the properties of the heralded single photons, in
the presence of dispersive elements on the paths of the pump,
signal, and idler. The spectral �temporal� properties of signal
photons heralded by an idler detection event may be conve-
niently characterized in terms of the heralded single-photon
chronocyclic Wigner function �CWF�. As shown in Ref. �26�,
the CWF for PDC light characterized by a JSA f��i ,�s� is
given by

Ws��,t� =� d�0g��0�� d��f��0,� +
��

2
�

 f���0,� −
��

2
�ei��t, �33�

where g��� represents the idler detection efficiency. The
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FIG. 4. This figure shows the effect of pump chirp on the tem-
poral properties of the two-photon state. In particular we show,
plotted as a function of the signal and idler times of emission, �a�
the Gaussian function in Eq. �12� for the case of no pump chirp, �b�
the rect function in Eq. �12�, �c� the square modulus of the product
of the functions in the previous two panels, and �d� same as in �c�
but for a chirped pump with �p=3.0410−27 s2.
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CWF is a real-valued function which represents a quasiprob-
ability distribution for the emission of a single photon with
frequency detuning � and at time t; the marginal distributions
of the CWF yield the corresponding spectral and temporal
single-photon intensity profiles. Here we generalize the re-
sult in Ref. �26� to the case where the three fields involved
experience dispersion. We assume that the idler detection
efficiency has a Gaussian spectral shape g���=exp�−�2 /
g

2�
�centered at �=�c and with bandwidth 
g�. Carrying out the
integrals in Eq. �33� with the JSA given in terms of a linear
approximation for the phase mismatch �see Eq. �4�� and us-
ing the Gaussian approximation for the phase matching func-
tion �see text before Eq. �15��, we obtain

Ws��,t� =
�4 − �2�t2��2

2��t��
exp	−

�2

��2
exp	−
t2

�t2

 exp���t� �34�

in terms of a mixed-term coefficient �, the temporal duration
�t, and the spectral width ��,

� =
2T2

2

T1
2 ,

�t2 = T1
2,

��2 =
T1

2

T2
4 + T1

2T3
2 , �35�

which are expressed, in turn, in terms of the following defi-
nitions

T1
2 =

2

T̂ii,R
2

�Tss,R
2 T̂ii,R

2 + �Tsi,I
2 �2� ,

T2
2 =

2

T̂ii,R
2

�Tss,I
2 T̂ii,R

2 − Tsi,R
2 Tsi,I

2 � ,

T3
2 =

2

T̂ii,R
2

�Tss,R
2 T̂ii,R

2 − �Tsi,R
2 �2� . �36�

Here, we have redefined Tii, now referred to as T̂ii, to
include the effect of the idler detection efficiency; it is ex-
pressed as follows:

T̂ii
2 = Tii

2 +
1


g
2 . �37�

Interestingly, dispersion experienced by the idler photon
does not have an effect on the spectral �temporal� properties
of a heralded single photon in the signal mode; indeed Eq.
�36� exhibits no dependence on �i. Note also that in the
absence of external dispersion, i.e., if �s=�i=�p=0, T1

2 re-
duces to T1

2=2Tss,R
2 and T2

2=0; on the other hand, T3
2 remains

unaffected by the presence or absence of dispersion. This in
turn implies that, according to Eq. �36�, in the absence of
dispersion, the mixed term � vanishes, in which case we
recover the expression for the CWF in Ref. �26�. The effect
of this mixed term, due to dispersion, is that the CWF be-
comes tilted in �� , t� space in such a way that the frequency
marginal distribution remains unaffected and the temporal
marginal distribution is broadened. In order to see this ex-
plicitly, let us obtain expressions for the marginal distribu-
tions. The spectral intensity profile of the heralded single
photon is given by

I���� =� dtWs��,t� = �4 − �2�t2��2

4���2 �1/2

exp	−
�2

��M
2 
 ,

�38�

in terms of the single-photon spectral width ��M

��M
2 =

1

T3
2 . �39�

The temporal intensity profile of the heralded single pho-
ton is given by

It�t� =� d�Ws��,t� = �4 − �2�t2��2

4��t2 �1/2

exp	−
t2

�tM
2 
 ,

�40�

in terms of the single-photon temporal width �tM,
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FIG. 5. �a�This plot shows the behavior of the Schmidt number, which quantifies the degree of entanglement, as a function of the pump
chirp parameter for the same source as in Figs. 1�a� and 1�b�; this illustrates that pump chirp may be used as a powerful tool to control the
degree of entanglement. Panels �b�–�d� show the joint temporal intensity for three different values of pump chirp: �p=0, �p=2.07
10−26 s2, and �p=1.0110−25 s2 identified along the curve in panel �a�.
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�tM
2 = T1

2 +
T2

4

T3
2 . �41�

As expected, while the single-photon spectral width ��M
exhibits no dependence on the external dispersion, in general
the single-photon temporal width �tM is broadened due to
dispersion. In order to further understand this broadening, it
is convenient to express the single-photon temporal duration
as �tM

2 =�t0
2+�, where �t0

2=2Tss,R
2 represents the single-

photon duration for no dispersion. We can express � as

�

2
=

Tii,R
2 �Tss,I

2 �2 + Tss,R
2 �Tsi,I

2 �2 − 2Tsi,R
2 Tss,I

2 Tsi,I
2

Tss,R
2 Tii,R

2 − �Tsi,R
2 �2 . �42�

Rewriting the above expression in terms of the correlation
coefficient � and using �i� the fact that � is constrained by
−1���1 and �ii� the inequality x2+y2−2xy��0, valid for
all x ,y with −1���1, we can easily show that ��0 so that
�t0 represents the shortest possible single-photon temporal
duration. In other words, as expected, the shortest single-
photon temporal duration occurs for no dispersion in any of
the three optical fields.

In order to illustrate the characterization of spectral �tem-
poral� heralded single-photon properties, Fig. 6 shows a plot
of the resulting chronocyclic Wigner function for the source
parameters assumed in Fig. 1�a�, and assuming no dispersion
experienced by the pump, signal, and idler modes, no PDC
filtering �
F→�� and ideal triggering �
g→��. While the
main plot in panel �a� shows the numerically obtained CWF
�through numerical integration of Eq. �33��, the inset shows
the CWF plotted from our analytic expression �Eq. �34��.
Panels �b� and �c� show the CWF marginal distributions,
equivalent to the spectral and temporal single-photon inten-
sity profiles. The effects of dispersion on the heralded single-
photon properties will be discussed in Sec. VI.

VI. DISPERSION SUPPRESSION EFFECTS

The factorable spectrally elongated state leads to some
interesting dispersion suppression properties. As was already

discussed in Ref. �1�, in the limit of an “ideal” factorable
spectrally elongated state where the signal photon is mono-
chromatic, i.e., where the JSA can be expressed as f��i ,�s�
=���s�I��i�, the two-photon state remains factorable despite
the presence of dispersion. Indeed, in this case the JSA can
then be expressed as

f��i,�s� = ���s�I��i�exp�i��p + �s��s
2�

 exp�i��p + �i��i
2�exp�i2�p�s�i� . �43�

The above expression includes a phase term which is not
factorable into signal and idler contributions. However, the
effect of this phase term, which depends on the product �s�i
and is controlled by the pump chirp parameter �p, is sup-
pressed in the limiting case where one of the two photons
produced is monochromatic; dispersive effects fundamen-
tally require a bandwidth. Note, however, that while this im-
plies that an ideal factorable two-photon state remains fac-
torable despite an arbitrary level of pump chirp, the two
photons do individually experience temporal broadening due
to the phase terms proportional to �s

2 and �i
2. We can also see

from Eq. �43� that if pump chirp is compensated by an equal
magnitude of signal and idler chirps, but with the opposite
sign, then the two-photon state becomes unaffected by the
presence of external dispersion since in this case phase terms
are either not present or yield no effect on the two-photon
state.

In order to study these effects for a realistic state, i.e., one
where the idler photon has a small, but nonzero bandwidth,
let us use our expressions for the two-photon state based on
the linear dispersion and Gaussian approximations. We will
begin this analysis by writing the joint spectral amplitude in
terms of the adimensional detunings defined by n�

= �T��,R
2 �1/2�� �with �=s , i�,

fn�ni,ns� = N� exp	− ns
2 − ni

2 − 2�nsni − i
Tss,I

2

Tss,R
2 ns

2 − i
Tii,I

2

Tii,R
2 ni

2

− 2i
Tsi,I

2

�Tss,R
2 Tii,R

2 �1/2nsni
 . �44�

For the two-photon state to be factorable, the two mixed
terms �one real and one imaginary� proportional to nsni must
be vanishingly small. In the absence of external dispersion, a
factorable asymmetric two-photon state can be obtained if �i�
an asymmetric group-velocity matching condition is fulfilled
�leading to 	s=0� and �ii� for a relatively long crystal,
coupled with a relatively large pump bandwidth, such that
�
	i��1. Under these conditions, it is straightforward to
show that the real parts of the T coefficients which define the
JSA �see Eq. �14�� may be expressed as Tii,R

2 =�	i
2 /4, Tss,R

2

=1 /
2, and Tsi,R
2 =1 /
2. Thus, the correlation coefficient be-

comes �=2 / ���
	i� which vanishes for the conditions
which define this state. The coefficient which defines the
imaginary mixed term may be written as �2
2�p� / ���
	i�.
Thus, a state fulfilling asymmetric group-velocity matching
becomes factorable in the presence of pump chirp if in addi-
tion to �
	i��1, the condition �
	i�� �
2�p� is also fulfilled.
This last condition tells us that if the adimensional group-
velocity mismatch 
	i greatly exceeds the adimensional
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FIG. 6. �Color online� �a� Chronocyclic Wigner function plotted
for a source identical to that assumed for Figs. 1�a� and 1�b� com-
puted numerically from Eq. �33�. Inset: plot resulting from the ana-
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pump chirp 
2�p, the two-photon state remains factorable
despite the presence of pump chirp. Clearly, the larger the
coefficient 	i �linearly proportional to the crystal length�, the
more pump chirp can be present while retaining two-photon
factorability. Also, note that this “immunity” to pump chirp
is weakened for larger values of the pump bandwidth 
. This
effect makes factorable and spectrally elongated states, for
which the above dispersion suppression effect occurs, attrac-
tive for practical implementations of quantum information
processing protocols, since in most realistic experimental
situations there is some chirp present in the pump beam
which under typical conditions would suppress factorability.

Recalling that Tss,I
2 =−��p+�s� �and similarly for the cor-

responding idler quantity�, we can see from Eq. �43� that if
−�p=�s=�i, in addition to the fulfillment of the conditions
from the previous paragraph, then the two-photon state be-
comes completely immune to external dispersion. In particu-
lar, the temporal duration of the signal photon in the presence
of chirp becomes identical to the corresponding duration
without external dispersion. In order to see this, it is clear
from Eq. �16� that if �p=−�s, leading to Tss,I

2 =0, then
� /�p= �
2�p� / ��
2	i

2 /4−1� �see Eq. �42��. Thus, if �
	i�
�1 and �
2�p�� �
	i� �the conditions discussed in the previ-
ous paragraph�, �→0, and therefore the signal temporal du-
ration becomes equal to that in the absence of external dis-
persion.

In Fig. 7 we illustrate the interplay of pump and signal-

idler chirp in determining the resulting photon-pair temporal
properties for the particular case of a source based on a KDP
crystal and which fulfils asymmetric group-velocity match-
ing, similar to that assumed for Figs. 1�a� and 1�b�. We
present plots of the joint temporal intensity � f̃�ti , ts��2 �panels
�a�–�c�� and of the chronocyclic Wigner function for the her-
alded single photon �panels �d�–�f�� for a number of different
dispersion regimes. These plots have been computed numeri-
cally from Eqs. �2� and �33� without resorting to approxima-
tions. The insets show the joint temporal intensity calculated
from our analytic expressions �from Eqs. �12� and �13�,
where the plots have been centered at ts= ti=0�. Note the
excellent agreement between the main plots and those in the
insets; this tells us that the approximation used in deriving
our analytic expression for the joint temporal amplitude, i.e.,
Eq. �12�, involving expressing the phase mismatch up to first
order in frequency detunings, is well justified. For these plots
we have assumed a fixed pump chirp �p=−4.7710−26 s2

and a varying degree of signal and idler chirp �for panels �a�
and �d�, �s=�i=0; for panels �b� and �e�, �s=�i=−�p; for
panels �c� and �f�, �s=�i=−2�p�. Note that the joint spectral
intensity �f��i ,�s��2 exhibits no dependence on external dis-
persion, i.e., it remains unchanged under the effect of signal-
idler dispersion.

For this source, the dispersion suppression effect de-
scribed above may be observed. This effect is clear from
panels �a�–�c� and from panels �d�–�f�. Indeed, the temporal
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duration of the signal photon indicated by panel �b� repre-
sents the minimum which can be obtained �for the specific
level of pump chirp which has been assumed� and is very
close to the temporal duration which would be expected in
the absence of pump dispersion. This can be appreciated
from Fig. 8�a�, where the temporal duration �tM of the signal
photon is plotted vs the dispersive propagation distance
�propagation is assumed to occur in fused silica fiber�. It is
clear that there is a specific value of the propagation dis-
tance, zmin, which corresponds to the dispersion matching
condition �s=�i=−�p, indicated by a vertical blue dash-dot
line, for which the temporal duration reaches its minimum
value. In Fig. 8�b� we show a closeup of the plot shown in
panel �a�, in the region where the minimum occurs. The
dash—dot horizontal blue line indicates the temporal dura-
tion expected without dispersion. For this source, asymmet-
ric group-velocity matching leads to 	s=0, while �
	i�
=1.34102 so that the condition �
	i��1 may be considered
to be fulfilled. The quantities �
2�p� and �
	i� are of the same
order �so that condition �
2�p�� �
	i� is not fulfilled�; there-
fore, for a smaller pump dispersion, or a longer crystal, the
minimum temporal duration can further approach the ideal
value obtained without dispersion.

The effect of chirp on the chronocyclic Wigner function
may be appreciated from panels �d� and �f� of Fig. 7. Spe-
cifically, as already discussed in Sec. V, chirp in general
leads to a rotation of this function in chronocyclic space in
such a way that the spectral width remains constant, while
the temporal width increases. Note that for the dispersion
matching propagation distance, for which �p=−�s=−�i, the
structure of the CWF and the JTI without dispersion is es-
sentially recovered despite the presence of external disper-

sion �i.e., compare Fig. 7�b� with Fig. 1�b�, and Fig. 7�e�
with Fig. 6�a��.

VII. EFFECTS OF DISPERSIVE PROPAGATION
ON THE TWO-PHOTON STATE

In this section we explore the effect on the spectral char-
acteristics of PDC two-photon states of propagation through
a dispersive medium. We will consider the specific case
where the signal and idler photons both propagate through
the same dispersive medium, such as a fiber, assumed to be
nonbirefringent so that the two orthogonally polarized gen-
erated photons experience the same dispersion �these results
could be easily generalized to differing dispersion for the
signal and idler photons since our treatment in previous sec-
tions is valid for both balanced and unbalanced propagation�.

The two-photon state, after propagation through distance
z �e.g., in a fiber� in a medium with quadratic chirp �i.e.,
ignoring higher-order dispersive terms�, can be written as

���z�� = �vac� + �� d�s� d�i f��i,�s;z���s���i� �45�

in terms of the corresponding JSA,

f��i,�s;z� = f��i,�s;0�eiBz��i
2+�s

2�. �46�

Here, f��i ,�s ;0� denotes the JSA for z=0, i.e., for no
dispersion experienced by the signal and idler photons �B
=0� as given by Eq. �15�; B is the GVD parameter defined as
B=�� /2, where � represents the wave number which char-
acterizes the dispersive medium. Note that f��i ,�s ;0� in-
cludes any dispersive phases associated with pump chirp.

While the degree of entanglement remains constant dur-
ing propagation of the signal-idler photons through a lossless
medium, we will show that the degree of modulus-only en-
tanglement, i.e., ignoring any phase entanglement, when cal-
culated in the time domain can vary drastically during propa-
gation. What this means is that entanglement can be
considered to reside to varying degrees in the modulus and in
the phase of the joint temporal amplitude depending on the
propagation distance z. We refer to this phenomenon as spec-
tral �temporal� entanglement migration, referring to the ob-
servation that entanglement can migrate between the modu-
lus and the phase of the JTA; there is a corresponding effect
which occurs in the spatial domain for free-space propaga-
tion �27�.

In our analysis we first restrict attention to the modulus of
the joint amplitude, i.e., we neglect any phase entanglement.
In cases where there is in fact no phase entanglement, then of
course the degree of entanglement of the reduced state con-
sidered here coincides with the degree of entanglement of the
actual physical state. Also note that the joint spectrum ob-
tained through a phase-insensitive spectrographic measure-
ment such as those reported in Refs. �28,29� corresponds to
the reduced state considered here. By carrying out a Schmidt
decomposition of the reduced sate and computing the result-
ing Schmidt number, for different values of the propagation
distance z, it becomes possible to monitor the degree of
modulus-only entanglement during propagation of the pho-
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FIG. 8. �Color online� �a� Temporal duration of heralded single
photon in the signal mode, as a function of the chirp parameter
which characterizes the propagation of signal and idler photon
pairs. While the dashed black line was computed through a numeri-
cal calculation, the red line was computed through our analytic
expression �see Eq. �41��. In this case the pump is assumed to be
chirped with �p=−4.7710−26 s2. Note that the temporal duration
as a function of chirp parameter exhibits a minimum at the propa-
gation distance corresponding to �=−�p. The dash-dot blue line
represents the temporal duration for no external dispersion. �b� Clo-
seup of the previous panel in the region of the minimum.
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ton pair. We refer to the modulus-only Schmidt number cal-
culated in the spectral domain as Km,S and to the modulus-
only Schmidt number in the temporal domain as Km,T. Note
that while the Schmidt number K calculated in the temporal
domain must equal the Schmidt number calculated in the
spectral domain, this is no longer true for the modulus-only
Schmidt numbers where, in general, Km,T�Km,S. We also
note that while Km,S is constant with respect to the propaga-
tion distance z �since the JSI is insensitive to dispersion�, in
general Km,T is a function of z.

While carrying out an analytic Schmidt decomposition on
the full two-photon state without resorting to approximations
is challenging, this becomes possible for two-photon states
for which the JSA can be written in terms of a real-valued
Gaussian function of the form exp�−�Ax2+By2+Cxy��,
where x ,y are variables and A ,B ,C are parameters. In this
case, the Schmidt eigenfunctions are given by Gauss-
Hermite functions �see Refs. �22,30��, while the eigenvalues
are given as �n= �1−�2��2n characterized by a parameter �.
Calculation of the Schmidt decomposition in the temporal
domain yields the following expression for this parameter

�t =
��i,R

2 �s,R
2 �1/2 − ��i,R

2 �s,R
2 − ��si,R

2 �2�1/2

�si,R
2 , �47�

in terms of which the reduced Schmidt number �in the tem-
poral domain� is given by

Km,T =
1 + �t

2

1 − �t
2 . �48�

In order to illustrate this entanglement migration effect,
we will consider as specific example the factorable �in the
absence of external dispersion� states obtained through
asymmetric GVM.

Figure 9 shows, for a factorable, spectrally elongated
source �with the same parameters as in Fig. 1�a��, the depen-
dence of the reduced Schmidt number Km,T, calculated
through Eq. �48� on the propagation distance z �through a
fused silica fiber�. Of course, the dependence of the “total”
Schmidt number K on propagation distance z is trivial: it
remains constant. Here, we have assumed a value for the
quadratic pump dispersion chirp of �p=−4.7710−26 s2

�note that for vanishing pump chirp, there is no entangle-
ment, and therefore Km,T remains constant at unity�. We ob-
serve that there is a specific propagation distance, zmin, for
which the reduced Schmidt number Km,T essentially reaches
the minimum value possible, i.e., unity, which corresponds to
the dispersion matching length for which �s=�i=−�p iden-
tified in Sec. VI. In the figure we have presented both: �i� a
plot of Km,T derived from our analytic expression �continu-
ous red line; see Eq. �48�� and �ii� a numerical version where
we have not resorted to approximations �dashed black line�.
For the analytic calculation, we obtain the total K through
Eq. �30�, with K=1 /V. The plots obtained analytically and
numerically exhibit the same general features for Km,T�z�: a
fast drop from z=0 to z=zmin �corresponding to �=−�p�,
reaching a value approaching unity, a fast rise to a level
similar to that at z=0, and a gradual drop for larger propa-
gation distances. Thus, in the temporal domain, as the photon

pair propagates through the fiber, entanglement migrates
from the modulus to the phase, back to the modulus, and
finally gradually to the phase once more. This behavior is, of
course, also apparent from Fig. 7 panels �a�–�c�, where the
first and last panels show strong temporal �modulus� corre-
lations, while the dispersion-matched case shows essentially
no temporal �modulus� correlations. Note that a similar be-
havior to that observed in Fig. 9 for Km,T would be observed
in terms of the Fedorov ratio F �see Eq. �32��.

Let us note that for the dispersion-matching propagation
distance in the fiber, z=zmin, Km,T�1 implies that in the time-
domain entanglement resides entirely in the phase. Further-
more, as discussed above for this particular source, when
viewed in the spectral domain, entanglement resides entirely
in the phase for any propagation distance z. Thus, remark-
ably, for this particular source at z=zmin entanglement resides
entirely in the phase in both domains. We speculate that ap-
plications of this form of phase-only entanglement, in both
the spectral and temporal domains, may result from the fact
that it is less accessible to measurements than modulus en-
tanglement.

VIII. CONCLUSIONS

In this paper we have presented a study of the effects of
external dispersion, i.e., introduced by optical elements other
than the nonlinear medium itself, for the process of type-II
collinear spontaneous parametric down-conversion. We have
derived expressions for the joint amplitude of the photon-
pair state, both in the spectral and temporal domains. In par-
ticular, we have presented an expression for the joint tempo-
ral amplitude resorting to a first-order expansion of the phase
mismatch, as well as a corresponding expression where we
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FIG. 9. �Color online� This plot shows, as a function of the
propagation distance z, the Schmidt number K and the reduced tem-
poral Schmidt number Km,T; we present both numerical �dashed
black line� and analytic �continuous red line� curves for these func-
tions. The minimum allowed value K=1 is indicated with a dash-
dot line. While K remains constant during propagation, Km,T exhib-
its a rich structure. From these plots we may infer that entanglement
migrates from the modulus of the joint temporal amplitude �at z
=z1� to its phase �at z=z2�, back to the modulus �at z=z3�, and
slowly to the phase once more �for large z�.
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also resort to the Gaussian approximation for the phase
matching function. While the first one yields two-photon
characteristics remarkably similar to those obtained through
a numerical calculation which does not resort to approxima-
tions, the second one permits analytic expressions for the
following: �i� Hong-Ou-Mandel interferogram, involving
two heralded single-photon sources, �ii� chronocyclic Wigner
function for heralded single photons, which fully character-
izes the spectral �temporal� properties of the single photons,
and �iii� Schmidt decomposition of the modulus of the joint
temporal amplitude. Exploiting this description, we find that
pump chirp can represent an extremely useful tool for con-
trolling the degree of photon-pair entanglement. Indeed, we
have found that if the two-photon state is factorable in the
absence of pump chirp, then the resulting Schmidt number
�which quantifies the entanglement present� can be continu-
ously adjusted, in principle, from K=1 to any desired value
through the pump chirp parameter. We likewise predict a
dispersion suppression effect which occurs for two-photon
states designed to be factorable and spectrally elongated: the
temporal duration of the heralded single photon in the pres-
ence of pump chirp can approach the temporal duration
which would have been observed without pump chirp if a
specific condition is fulfilled by the pump and PDC chirp
parameters.

We have explicitly shown the relationship between �i� the
photon-pair Schmidt number, �ii� the Hong-Ou-Mandel vis-
ibility in a two-crystal arrangement, and �iii� the heralded
single-photon purity. This gives us a method to experimen-
tally characterize both the degree of photon-pair entangle-
ment and the degree of heralded single-photon purity. We
have shown that the spectral �temporal� entanglement present
in a two-photon state can migrate between the modulus and
the phase of the joint temporal amplitude. We have presented
details of a specific source for which entanglement is ex-
pected to reside entirely in the phase in both the spectral and

temporal domains. We believe that the analysis presented in
this paper will be useful for the design and implementation
of specific photon-pair sources tailored for quantum informa-
tion processing applications.
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APPENDIX

The analytic expression for the joint amplitude �see Eq.
�12�� may be written in terms of a function of the form

Z�G,x0;x� =
1

��
�

G�x−x0�

G�x+x0�

dte−t2 =
1

2
�erf�G�x + x0��

− erf�G�x − x0��� . �A1�

If we write parameter G in terms of its modulus and
phase, i.e., G= �G�exp�i��, this function may be shown to
converge for −� /4���� /4.

In the limit where �Gx0�→�, function Z�G ,x0 ;x� behaves
as a “top hat” function,

lim
�Gx0�→�

�Z�G,x0;x�� = rect�− x0,x0;x� , �A2�

where

rect�x;a,b� = �1, a � x � b

0, otherwise.
 �A3�

In the limit where �Gx0�→0, function Z�G ,x0 ;x� behaves
as a Gaussian function.

lim
�Gx0�→0

Z�G,x0;x� =
2

��
Gx0 exp�− G2x2� . �A4�
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