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We study the processes of spontaneous four-wave mixing and of third-order spontaneous parametric downconversion in optical fibers, as the
basis for the implementation of photon-pair and photon-triplet sources. We present a comparative analysis of the two processes including
expressions for the respective quantum states and plots of the joint spectral intensity, a discussion of phasematching characteristics, and
expressions for the conversion efficiency. We have also included a comparative study based on numerical results for the conversion efficiency
for the two sources, as a function of several key experimental parameters.
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Estudiamos los procesos de mezclado de cuatro ondas espontáneo y de conversión paraḿetrica descendente de tercer orden espontánea en
fibrasópticas, como base para la implementación de fuentes de parejas y tripletes de fotones. Presentamos un análisis comparativo de los dos
procesos, incluyendo expresiones para los estados cuánticos respectivos y gráficos de la intensidad espectral conjunta, una discusión de las
caracteŕısticas de empatamiento de fases, y expresiones para la eficiencia de conversión. Tambíen hemos inclúıdo un estudio comparativo,
basado en resultados numéricos, de la eficiencia de conversión para los dos procesos, en función de diferentes parámetros experimentales.

Descriptores: Estados fot́onicos no cĺasicos; entrelazamiento cuántico; mezclado de cuatro ondas.

PACS: 42.50.-p; 03.65.Ud; 42.65.-k; 42.65.Hw

1. Introduction

Nonclassical light sources, and in particular photon-pair
sources, have become essential for testing the validity
of quantum mechanics [1] and for the implementation
of quantum-enhanced technologies such as quantum cryp-
tography, quantum computation and quantum communica-
tions [2]. Photon pairs can be generated through sponta-
neous parametric processes, in which classical electromag-
netic fields illuminate optically non-linear media. Specifi-
cally, photon-pair sources are commonly based on the pro-
cess of spontaneous parametric down conversion (SPDC) in
second order nonlinear crystals [3]. However, in the last
decade there has been a marked interest in the develop-
ment of photon-pair sources based on optical fibers [4]. In
fibers, the process responsible for generating photon pairs
is spontaneous four-wave mixing (SFWM), which offers
several significant advantages over SPDC, for example in
terms of the conversion efficiency [5]. The third-order non-
linearity in optical fibers which makes SFWM possible can
also lead to the generation of photon triplets through the pro-
cess of third-order spontaneous parametric down conversion
(TOSPDC) [6].

Recently, we have studied spontaneous parametric pro-
cesses in optical fibers, including both SFWM photon-pair
sources and TOSPDC photon-triplet sources. In the context
of SFWM sources, we have carried out a thorough theoretical
study of the spectral correlation properties between the signal
and idler photons [7-9], which permits tailoring these prop-
erties to the needs of specific quantum information process-

ing applications. In particular, our results have helped pave
the way towards the experimental realization of factorable
photon-pair sources [10-12], which represent an essential re-
source for the implementation of linear optics quantum com-
putation (LOQC) [13]. Likewise, we have analyzed the im-
portant aspect of the attainable conversion efficiency, for the
pulsed-pumps and monochromatic-pumps regimes, as well as
for degenerate-pumps and non-degenerate-pumps configura-
tions [5].

Even though a number of approaches for the genera-
tion of photon triplets have been either proposed or demon-
strated [14-17], the reported conversion efficiencies have
been extremely low. Recently, we have proposed a scheme
for the generation of photon triplets in thin optical fibers by
means of TOSPDC [6]. Our proposed technique permits
the direct generation of photon triplets, without postselec-
tion, and results derived from our numerical simulations have
shown that the emitted flux for our proposed source is com-
petitive when compared to other proposals [17]. Advances in
highly non-linear fiber technology are likely to enhance the
emission rates attainable through our proposed technique.

In this paper, we present a comparison of the SFWM and
TOSPDC processes. To this end, we assume a specific fiber
with a specific pump frequency which permits the realization
of both processes. We restrict our attention to SFWM in-
volving degenerate pumps, and to TOSPDC with degenerate
emitted frequencies. Our comparison includes the following
aspects: i) the quantum state, leading to the joint spectrum,
ii) the phasematching properties, and iii) the conversion effi-
ciency.



SPONTANEOUS PARAMETRIC PROCESSES IN OPTICAL FIBERS: A COMPARISON 7

FIGURE 1. Energy level diagrams for the (a) SFWM and (b)
TOSPDC processes.

2. Theory of spontaneous parametric pro-
cesses in optical fibers

Non-linear processes in optical fibers originate from the third
order susceptibilityχ(3) [18]. Photon pairs and triplets can be
generated in optical fibers by means of SFWM and TOSPDC,
respectively. Both of these processes, which result from four
wave mixing, require the fulfilment of energy and momen-
tum conservation between the participating fields. The cur-
rent analysis focuses on configurations in which all fields are
linearly polarized, parallel to thex-axis, and propagate in the
same direction along the fiber, which defines thez-axis. Our
work could be generalized to cross-polarized source designs.

In the case of SFWM, two photons (one from each of two
pump fields) with frequenciesω1 andω2 are jointly annihi-
lated giving rise to the emission of a photon pair, where the
two photons are typically referred to as signal(s) and idler(i),
with frequenciesωs andωi. The energy conservation rela-
tionship, thus readsω1 + ω2 = ωs + ωi. In contrast, in the
case of TOSPDC, a single pump photon at frequencyωp is
annihilated, giving rise to a photon triplet, where the three
photons are here referred to as signal-1(r), signal-2(s) and
idler(i), with emission frequenciesωr, ωs andωi. The energy
conservation constraint in this case readsωp = ωr +ωs +ωi.
Representations of the SFWM and TOSPDC processes, in
terms of the frequencies involved, are shown in Fig. 1.

2.1. Two-photon and three-photon quantum state

Following a standard perturbative approach [19] we have pre-
viously demonstrated that the SFWM two-photon state [7]
and the TOSPDC three-photon state [6,20] can be written as

|Ψ〉 = |0〉s|0〉i + κ

∫
dωs

∫
dωiF (ωs, ωi) |ωs〉s |ωi〉i , (1)

and

|Ψ〉 = |0〉r|0〉s|0〉i + ζ

∫
dωr

∫
dωs

×
∫

dωiG (ωr, ωs, ωi) |ωr〉r |ωs〉s |ωi〉i , (2)

respectively, whereκ andζ are constants related to the con-
version efficiency. In Eq. (1),F (ωs, ωi) is the SFWM joint
spectral amplitude (JSA) function and is given by [5]

F (ωs, ωi) =
∫

dω α1(ω)α2(ωs + ωi − ω)

× sinc

[
L

2
∆k(ω, ωs, ωi)

]
ei L

2 ∆k(ω,ωs,ωi), (3)

whereL is the fiber length,αν(ω) is the pump spectral enve-
lope for modeν = 1, 2, and∆k(ω, ωs, ωi) is the phasemis-
match defined as

∆k (ω, ωs, ωi) = k1 (ω) + k2 (ωs + ωi − ω)− k (ωs)

− k (ωi)− ΦNL, (4)

which includes a nonlinear contributionΦNL derived from
self/cross-phase modulation [7]. It can be shown that

ΦNL = (γ1 + 2γ21 − 2γs1 − 2γi1)P1

+ (γ2 + 2γ12 − 2γs2 − 2γi2)P2, (5)

wherePν represents the pump peak power, and coefficients
γ1 and γ2 result from self-phase modulation of the two
pumps, and are given withν = 1, 2 by

γν =
3χ(3)ωo

ν

4εoc2n2
νAν

eff

. (6)

In Eq. 6, the refractive indexnν ≡ n(ωo
ν) and the effec-

tive area

Aν
eff ≡

[∫ ∫
dxdy|Aν(x, y)|4

]−1

(7)

(where the integral is carried out over the transverse dimen-
sions of the fiber) are defined in terms of the carrier frequency
ωo

ν for pump-modeν [18]. Here, functionsAµ(x, y) (with
µ = 1, 2, s, i) represent the transverse field distributions and
are assumed to be normalized such that

∫ ∫
dxdy|Aµ(x, y)|2 = 1. (8)

In contrast, coefficientsγµν (ν = 1, 2 andµ = 1, 2, s, i) cor-
respond to the cross-phase modulation contributions that re-
sult from the dependence of the refractive index experienced
by each of the four participating fields on the pump intensi-
ties. These coefficients are given by

γµν =
3χ(3)ωo

µ

4εoc2nµnνAµν
eff

, (9)

wherenµ,ν ≡ n(ωo
µ,ν) is defined in terms of the central fre-

quencyωo
µ,ν for each of the four participating fields, and

Aµν
eff ≡

[∫ ∫
dxdy|Aµ(x, y)|2|Aν(x, y)|2

]−1

(10)
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is the two-mode effective overlap area (note that
Aµν

eff=Aνµ
eff ). Although in general termsγν 6= γµν it may

be shown that for a SFWM interaction, the following rep-
resent valid approximations:γ1 ≈ γ21 ≈ γs1 ≈ γi1 and
γ2 ≈ γ12 ≈ γs2 ≈ γi2. Taking these approximations into
account, we arrive at the following simplified expression
for ΦNL

ΦNL = γ1P1 + γ2P2. (11)

The JSA function in Eq. (3) characterizes the spectral
entanglement present in the SFWM photon pairs. We have
previously shown that depending on the type and degree of
group velocity mismatch between the pump and the emitted
photons (which can be controlled by tailoring the fiber dis-
persion), it becomes possible to generate two-photon states
in a wide range of spectral correlation regimes [7].

We now turn our attention to the three-photon TOSPDC
state given by Eq. (2), whereG(ωr, ωs, ωi) represents the
TOSPDC three-photon joint spectral amplitude function.
This function characterizes the entanglement present in the
photon triplets and can be shown to be given by [6,20]

G(ωr, ωs, ωi) = α(ωr + ωs + ωi)φ(ωr, ωs, ωi), (12)

whereα(ωr +ωs +ωi) is the pump spectral amplitude (PSA)
andφ(ωr, ωs, ωi) is the phasematching function (PM) which
is given by

φ(ωr, ωs, ωi) = sinc[L∆k(ωr, ωs, ωi)/2]

× exp[iL∆k(ωr, ωs, ωi)/2], (13)

written in terms of the fiber lengthL and the phasemismatch
∆k(ωr, ωs, ωi)

∆k(ωr, ωs, ωi) = kp(ωr + ωs + ωi)− kr(ωr)

− ks(ωs)− ki(ωi)

+ [γp − 2(γrp + γsp + γip)]P. (14)

In Eq. (14), the term in square brackets is the non-linear
contribution to the phase mismatch, whereP is the pump
peak power, andγp andγµp are the nonlinear coefficients de-
rived from self-phase and cross-phase modulation, which are
given by expressions of the same form as Eqs. (6) and (9),
respectively.

The joint spectral amplitude function for TOSPDC
photon-triplets [see Eq. (12)] is a clear generalization of
the JSA which describes photon-pairs generated by SPDC
in second order nonlinear crystals [21]. Note that while
the TOSPDC JSA function is given as a simple product of
functions, the SFWM JSA function [see Eq. (3)] is given
by a convolution-type integral, which has an exact solu-
tion for monochromatic pump fields [8] and which likewise
can be integrated analytically for Gaussian-envelope pump
fields, under a linear approximation of the phase mismatch of
Eq. (4) [7].

2.2. Conversion efficiency in SFWM and TOSPDC pro-
cesses

A crucial aspect to consider in designing a photon-pair or
photon-triplet source is the conversion efficiency, to which
we devote this section. We present conversion efficiency ex-
pressions previously derived by us, for the SFWM process [5]
and for the TOSPDC process [6,20], in terms of all relevant
experimental parameters.

Here, we define the conversion efficiency as the ratio of
the number of pairs or triplets emitted per unit time to the
number of pump photons per unit time. In the case of pulsed
pumps, we limit our treatment to pump fields with a Gaussian
spectral envelope, which can be written in the form

αν(ω) =
21/4

π1/4
√

σν

exp
[
− (ω − ωo

ν)2

σ2
ν

]
, (15)

whereωo
ν represents the central frequency andσν defines the

bandwidth (withν = 1, 2).
We showed in Ref. 5 that the SFWM photon-pair conver-

sion efficiency can be written as

η =
28~c2n1n2

(2π)3R
L2γ2

fwmp1p2

σ1σ2(ωo
1p2 + ωo

2p1)

×
∫

dωs

∫
dωi h2(ωs, ωi) |f(ωs, ωi)|2 , (16)

in terms of a version of the joint spectral amplitude [see
Eq. (3)] defined asf(ωs, ωi) = (πσ1σ2/2)1/2F (ωs, ωi),
which does not contain factors in front of the exponential
and sinc functions so that all pre-factors appear explicitly in
Eq. (16), and where the functionh2(ωs, ωi) is given by

h2(ωs, ωi) =
k

(1)
s ωs

n2
s

k
(1)
i ωi

n2
i

, (17)

in terms ofk(1)
µ ≡ k(1)(ωµ), which represents the first fre-

quency derivative ofk(ω), and wherenµ ≡ n(ωµ).
In Eq. (16),~ is Planck’s constant,c is the speed of light

in vacuum,pν is the average pump power (forν = 1, 2), R
is the pump repetition rate (we assume that two pump fields
have the same repetition rate), and the parameterγfwm is the
nonlinear coefficient that results from the interaction of the
four participating fields and is different from the parameters
γ1 andγ2 of Eq. (6). This parameter can be expressed as

γfwm =
3χ(3)

√
ωo

1ω
o
2

4εoc2n1n2Aeff
, (18)

whereAeff is the effective interaction area among the four
fields given by

Aeff =
1∫

dx
∫
dyA1(x, y)A2(x, y)A∗s(x, y)A∗i (x, y)

. (19)
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In the monochromatic-pumps limit,i.e. σ1,2 → 0, it can
be shown that Eq. (16) is reduced to [5]

ηcw =
25~c2n1n2

π

L2γ2
fwmp1p2

p1ω2 + p2ω1

×
∫

dωh2(ω, ω1 + ω2 − ω)sinc2[L∆k′cw(ω)/2]. (20)

whereh2(ω, ω1 +ω2−ω) is given according to Eq. (17), and
where the phase mismatch

∆k′cw(ω) = ∆kcw(ω, ω1+ω2−ω)

is written in terms of the function

∆kcw(ωs, ωi) = k [(ωs + ωi + ω1 − ω2) /2]

+ k [(ωs + ωi − ω1 + ω2) /2]

− k(ωs)− k(ωi)− (γ1p1 + γ2p2). (21)

It is clear from Eqs. (16) and (20) that the SFWM conver-
sion efficiency has a linear dependence on pump power, or
alternatively the emitted flux has a quadratic dependence on
this parameter. Note that although the phasemismatch has a
pump-power dependence, no deviation from the linear behav-
ior is observed for power levels considered as typical. Note
that these conversion efficiency expressions are valid only
in the spontaneous limit, where the pump powers are low
enough to avoid generation events involving multiple pairs.

As is also clear form Eqs. (16) and (20), the conversion
efficiency has a quadratic dependence on the nonlinearity co-
efficient γfwm, which implies that it has an inverse fourth
power dependence on the transverse mode radius [18]. It can
be shown that in general the double integral in Eq. (16), or
the single integral in Eq. (20), scales asL−1, so that taking
into account theL2 appearing as a prefactor, the conversion
efficiency scales linearly withL. Likewise, it can be shown
that in general the double integral in Eqs. (16) scales asσ3,
so thatη in Eq. (16) has a linear dependence on the pump
bandwidth.

In what follows, we focus on the conversion efficiency
for the TOSPDC process. As we have shown for the pulsed-
pump regime [see Eq. (15)], this efficiency can be written
as [6]

η =
25/232c3~2n3

p

(π)5/2ωo
p

L2γ2
pdc

σ

×
∫

dωr

∫
dωs

∫
dωih3(ωr, ωs, ωi)|g(ωr, ωs, ωi)|2, (22)

which is given in terms of the function

h3(ωr, ωs, ωi) =
k

(1)
r ωr

n2
r

k
(1)
s ωs

n2
s

k
(1)
i ωi

n2
i

, (23)

and the new function

g(ωr, ωs, ωi) = (πσ2/2)1/4G(ωr, ωs, ωi),

which is a version of the joint spectral amplitude
G(ωr, ωs, ωi) [see Eq. (12)], which does not contain factors
in front of the exponential and sinc functions, so that all pre-
factors terms appear explicitly in Eq. (22).

In Eq. (22)γpdc is the nonlinear coefficient that governs
the TOSPDC process, given by

γpdc =
3χ(3)ωo

p

4ε0c2n2
pAeff

, (24)

with Aeff the effective interaction area among the four fields,
which is expressed as

[∫
dx

∫
dyAp(x, y)A∗r(x, y)A∗s(x, y)A∗i (x, y)

]−1

,

where the integral is carried out over the transverse dimen-
sions of the fiber. Note that this nonlinear coefficient is dif-
ferent from parametersγν andγµν defined in Eqs. (6) and (9),
respectively.

For a monochromatic pump, the conversion efficiency
can be obtained by taking the limitσ → 0 [see Eq. (22)],
from which we obtain

ηcw =
2232~2c3n3

pγ
2
pdcL

2

π2ωp

×
∫

dωr

∫
dωsh3(ωr, ωs, ωp − ωr − ωs)

× sinc2
(

L

2
∆kcw

)
, (25)

whereh3(ωr, ωs, ωp−ωr−ωs) is given according to Eq. (23),
and where the phasemismatch∆kcw(kr, ks) [see Eq. (14)] is
given by

∆kcw(ωr, ωs) = kp(ωp)− k(ωr)

− k(ωs)− k(ωp − ωr − ωs)

+ [γp − 2(γrp + γsp + γip)]p, (26)

wherep is the average pump power. As in the case of SFWM,
for TOSPDC the conversion efficiency [see Eqs. (13) and
(19)] has a quadratic dependence on the nonlinear coefficient
γpdc, which implies an inverse fourth power dependence on
the transverse mode radius. Thus, for both processes small
core radii favor a large emitted flux.

An important difference between the two processes re-
lates to the dependence of the conversion efficiency on the
pump power and bandwidth. While the TOSPDC conversion
efficiency is independent of the pump power (except for the
pump-power dependence of the phasemismatch, which can
be neglected for typical pump-power levels), see Eqs. (22)
and (25), the SFWM conversion efficiency scales linearly
with the pump power. Note that in this respect the behav-
ior for TOSPDC is identical to that observed for SPDC in
second-order nonlinear crystals. Underlying this behavior is
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the fact that for SFWM two pump photons are annihilated per
generation event, while for TOSPDC, and for SPDC, a single
pump photon is annihilated per generation event.

Likewise, it can be shown that for source designs re-
garded as typical, the triple integral in Eq. (22) scales lin-
early with the pump bandwidthσ so that the TOSPDC con-
version efficiency is constant with respect toσ (within the
phasematching bandwidth) [22]. Again, note that this be-
havior is identical to that observed for SPDC. This is to be
contrasted with the linear dependence of the SFWM con-
version efficiency withσ. This implies that unlike SFWM
sources, for TOSPDC sources a pulsed-pump configuration
does not represent an advantage vs a monochromatic-pump
configuration in terms of the attainable emitted flux. In fact,
the conversion efficiency forspontaneousfour wave mixing
scales with pump power and bandwidth in the same manner
as for astimulatedprocess, such as second harmonic genera-
tion, based on a second order nonlinearity. This implies that
(for sufficiently high pump powers) SFWM sources can be
considerably brighter than both TOSPDC and SPDC sources.
As a concrete illustration, in a remarkable recent SPDC ex-
periment [23], despite extensive source optimization the ob-
served photon-pair flux, per pump power and per unit emis-
sion bandwidth, is∼ 500 times lower compared to a repre-
sentative SFWM experiment [24].

Finally, it can be shown that for source designs regarded
as typical, the frequency integrals in Eqs. (22) and (25) scale
asL−1, so that the TOSPDC conversion efficiency exhibits a
linear dependence onL as in the case of SFWM [25].

3. Phase matching properties for SFWM and
TOSPDC

In this section, we describe the techniques studied by
us, designed to achieve phasematching for the SFWM
and TOSPDC processes in fused-silica fibers. In both
cases, phasematching properties are linked to the frequency-
dependence of the propagation constantk(ω) for each of the
four participating fields.

On the one hand for SFWM we assume that all four fields
propagate in the same transverse fiber mode, in particular in
the HE11 fiber mode. Our treatment could be generalized
to the case where the fields propagate in arbitrary transverse
modes [18]. On the other hand, for TOSPDC we adopt a
multi-modal phasematching strategy where the pump propa-
gates in a different mode compared to the generated photon
triplets. Note that the frequency-degenerate low-pump-power
phasematching condition for TOSPDC can be written as fol-
lows: kp(3ω) = 3k(ω). Because of the large spectral sep-
aration between the pump and the generated photons,k(3ω)
is considerably larger than3k(ω), for most common optical
materials, characterized by normal dispersion. We propose
to exploit the use of two different transverse modes in a thin
fiber guided by air, i.e. with a fused silica core and where the
cladding is the air surrounding this core. In particular, we will

assume that while the TOSPDC photons all propagate in the
fundamental mode of the fiber (HE11), the pump mode prop-
agates in the first excited mode (HE12) [26]. We have shown
that for the generation of photon-triplets at a particular de-
generate frequency there is a single core radius for which the
phase matching condition is fulfilled [6]. This scheme can be
easily generalized to non-frequency-degenerate TOSPDC.

In order to compare the two processes, we choose a sin-
gle fiber which can be used to implement both, a photon-
pair SFWM source and a photon-triplet TOSPDC source.
We restrict this comparison to degenerate-pumps SFWM and
to TOSPDC involving frequency-degenerate triplets. As a
specific design, we consider a fiber guided by air with a
core radius ofr = 0.395 µm. This core radius leads to
TOSPDC phasematching involving a pump centered atλp =
0.532 µm and frequency-degenerate photon triplets centered
at λ = 1.596 µm. Figure 2 shows graphically the phase-
matching properties for the two processes in terms of genera-
tion frequencies vs pump frequency [SFWM in panel (a), and
TOSPDC in panel (b)]. The black curves were obtained by
solving numerically, for each of the two processes, the per-
fect phasematching condition. We have displayed the gen-
eration frequencies obtained assuming perfect phasematch-
ing in terms of detunings:∆s,i = ωs,i − ωp for SFWM,
and ∆r,s = ωr,s − (ωp − ωi)/2 for TOSPDC (ωµ, with
µ = r, s, i, p, represents the frequencies for each of the par-
ticipating modes). In the case of degenerate-pumps SFWM,
energy conservation dictates that∆s = −∆i so that there are
only two independent frequency variables (ωp and∆s) and
thus Fig. 2(a) fully characterizes the relevant phasematch-
ing properties. In the case of TOSPDC, in order to obtain a
similar representation of phasematching properties we fix the
idler-photon frequency [toωi = 2πc/1.596 µm in Fig. 2(b)],
so that energy conservation dictates that∆r = −∆s. In this
case, a series of plots similar to that in Fig. 2(b) each with a
different value ofωi, is required for a full characterization of
the phasemathching properties.

FIGURE 2. (a) Black, solid curve: perfect phasematching
(∆k=0) contour for degenerate-pumps SFWM. (b) Black, solid
curve: perfect phasematching (∆k=0) contour for TOSPDC with
λi=1.596 µm. Black background: non-physical zone where en-
ergy conservation would imply that one of the generated photons
has a negative frequency. Gray background: frequency zone out-
side of the range of validity of the dispersion relation used for
fused-silica.

Rev. Mex. F́ıs. S57 (3) (2011) 6–14
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FIGURE 3. SFWM joint spectral intensity for the two-photon state,
plotted as a function of frequency variablesν+ andν−.

In general, for a fiber exhibiting two zero-dispersion fre-
quencies within the spectral range of interest, the SFWM
perfect phasematching contour in the space of generated vs
pump frequencies is formed by two loops essentially con-
tained between these two zero dispersion frequencies [7]; this
is illustrated in Fig. 2(a). For a specific pump wavelengthωp

there may be two separate solutions for∆k = 0, leading
to the inner and outer branches of the two loops. However,
the inner solutions tend to be spectrally near toωp, with ∆s

and∆i strongly determined by the nonlinear contribution of
the phasemismatch [see Eq. (4)], and thus pump-power de-
pendent. This small spectral separation can lead to contam-
ination due to spontaneous Raman scattering (which occurs
within a window of∼ 40 THz width towards shorter fre-
quencies fromωp). In order to avoid Raman contamination,
we exploit the outer branches of the phasematching contour,
which is comparatively less dependent on the pump power.
Note that for this specific fiber, perfect phasematching oc-
curs for pump wavelengths within a range of approximately
470nm. For the photon-triplet source proposed in this study
we have chosen a pump wavelength ofλp = 0.532 µm, that
corresponds to the third harmonic of 1.596µm, which is the
selected degenerate TOSPDC frequency. For this same fiber
and for the same pump wavelength, the SFWM process leads
to signal and idler modes centered at 0.329µm and 1.398µm,
respectively. In Fig. 2(a) the selected pump wavelength and
the corresponding signal and idler frequencies are indicated
by a black dashed line and red circle, respectively.

Unlike for the SFWM process [see Fig. 2(a)], the per-
fect TOSPDC phasematching contour (withωi kept con-
stant) is an open curve where the vertex (red circle), corre-
sponds to frequency-degenerate photon-triplet emission and
where the selected pump frequency is indicated by a vertical

FIGURE 4. Representation of the TOSPDC joint spectral intensity
obtained for the same fiber and pump parameters as in Fig. 3. (a)
JSI evaluated atν+ = 0. (b) JSI evaluated atνA = νB = 0.

black-dashed line. It can be seen that keepingωi constant at
ωp/3, the pump can be tuned over a wide frequency range,
resulting in a wide tuning range forωr andωs, away from
ωp/3. It is worth mentioning that in general, the nonlinear
phasemismatch contribution [see Eq. (14)] can be neglected
for pump-power levels regarded as typical.

In Figs. 3 and 4 we show plots of the joint spectral in-
tensity (JSI) function, for the SFWM and TOSPDC sources
implemented with the specific fiber described above. These
JSI functions are given by|F (ωs, ωi)|2 and|G(ωr, ωs, ωi)|2,
respectively. If properly normalized, the JSI represents the
probability distribution associated with the different emission
frequencies.

A plot of the JSI shows the type and degree of spectral
correlations which underlie the spectral entanglement present
in the photon pairs or triplets. Typical spectral correlations
imply that, for both SFWM and TOSPC, the JSI is tilted in
the generated frequencies space, with narrow spectral fea-
tures along specific directions. Thus, for the fiber parameters
which we have assumed, the SFWM JSI exhibits a narrow
width along theωs + ωi direction, and a much larger width
in the perpendicular direction. In the case of TOSPDC, the
JSI exhibits a narrow width along theωr + ωs + ωi direction
and much larger widths along the perpendicular directions.
This means that, for both processes, it is convenient to plot
the JSI in frequency variables chosen in accordance with the
correlations present.

Figure 3 shows the JSI for the SFWM source, plotted vs
ν+ = 1√

2
(νs+νi) andν− = 1√

2
(νs−νi), defined in terms of

frequency detuningsνs ≡ ωs − ωo
s andνi ≡ ωi − ωo

i where
ωo

s andωo
i represent signal and idler frequencies for which

perfect phasematching is obtained. For this plot, we have as-
sumed a fiber length ofL = 1 cm and a pump bandwidth of
σ = 0.118 THz (which corresponds to a Fourier-transform-
limited pulse duration of20 ps). The figure reveals that for
this specific parameter combination, the signal and idler pho-
tons are spectrally anti-correlated.

Figure 4 shows a representation of the three-photon
TOSPDC JSI, where we have assumed the same values for
the fiber length and pump bandwidth that we used for SFWM,
plotted as a function of the following frequency variables
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ν+=
1√
3
(ωr+ωs+ωi−3ωo)

νA=
1
2

(
1− 1√

3

)
ωr+

1
2

(
−1− 1√

3

)
ωs+

1√
3
ωi

νB=
1
2

(
1+

1√
3

)
ωr+

1
2

(
−1+

1√
3

)
ωs− 1√

3
ωi. (27)

whereωo is defined asωo ≡ ωp/3. Note that the variableν+

defined for TOSDPC is different to that defined for SFWM,
in both cases given in terms of the sum of the generated fre-
quencies. In Fig. 4(a), we have plotted the JSI in these new
variables, evaluated atν+ = 0, and in Fig. 4(b) we have plot-
ted the JSI in these new variables, evaluated atνA = νB = 0.
Note that the width alongν+ is much narrower compared to
the width alongνA andνB , an indication of the existence of
spectral correlations. The ratio of the width alongνA or νB

to the width alongν+ is an indication of the strength of the
correlations.

4. SFWM and TOSPDC conversion efficiency
for specific source designs

In this section, we present numerical simulations of the ex-
pected conversion efficiency as a function of various ex-
perimental parameters (fiber length, pump power and pump
bandwidth) for the specific SFWM and TOSPDC sources de-
scribed in the previous section (see Figs. 2, 3 and 4). We
include in our analysis both, the pulsed- and monochromatic-
pump regimes. In order to make this comparison as useful as
possible, both sources are based on the same fiber (guided by
air with a core radius ofr = 0.395 µm) and the same pump
frequency (λp = 0.532 µm). While in the SFWM source
the signal and idler modes are centered at non-degenerate fre-
quencies (λs = 0.329 µm andλi = 1.398 µm), the TOSPDC
source is frequency degenerate atλ = 1.596 µm.

For the SFWM source, the nonlinear coefficientγfwm

was numerically calculated from Eq. (18) yielding a value
of γfwm = 629 (kmW)−1. The corresponding value for
the TOSPDC source, numerically-calculated from Eq. (24),
yields a value ofγpdc = 19 (kmW)−1 . Although the two
processes take place in the same fiber with the same pump
frequency, the striking difference in the nonlinear coefficient
results from the far superior overlap between the four par-
ticipating fields in case of the SFWM source, for which the
four fields propagate in the same fiber mode (HE11). Tak-
ing into account the quadratic dependence of the conversion
efficiency (observed for both processes) on the nonlinearity,
this clearly favors a greater brightness for the SFWM source
compared to the TOSPDC source.

4.1. Pump bandwidth dependence

We will first consider the conversion efficiency for the two
sources described above as a function of the pump bandwidth

FIGURE 5. SFWM and TOSPDC conversion efficiency (in log-
arithmic scale) for the pulsed and monochromatic pump regimes,
as a function of: (a) the pump bandwidth (the yellow circle and
the green square correspond to the monochromatic-pump limit for
SFWM and TOSPDC, respectively), (b) the average pump power,
and (c) the fiber length.

(while maintaining the energy per pulse, or alternatively, the
average power and the repetition rate constant). For this anal-
ysis, we assume a fiber length ofL = 1 cm, a repetition rate
R = 100 MHz and an average pump powerp = 180 mW
for both sources. Note that asσ varies, the temporal duration
varies, and consequently the peak power varies too.

We evaluate the conversion efficiency from Eqs. (16)
and (22) for a pump bandwidthσ range23.5 − 117.7 GHz
(or a Fourier-transform-limited temporal duration range 20-
100 ps). Numerical results for the SFWM source [obtained
from Eq. (16)] and for the TOSPDC source [from Eq. (22)]
are shown in Fig. 5(a) (indicated by the black solid line and
the magenta dashed-dotted line, respectively). The conver-
sion efficiency has been plotted in a logarithmic scale, con-
sidering the striking difference in order of magnitude be-
tween the efficiencies for the two processes. It can be seen
that for the largestσ considered, the SFWM conversion effi-
ciency is ten orders of magnitude greater than the TOSPDC
conversion efficiency. As expected,η as given by Eq. (16),
exhibits a linear dependence on the pump bandwidth (this
is not graphically evident in the figure due to the logarith-
mic scale). The black solid line in Fig. 5(a) shows this be-
havior. Thus, for SFWM, the use of a pulsed pump signifi-
cantly enhances the emitted flux over the level attainable for
the monochromatic-pump regime. In contrast, the TOSPDC
conversion efficiency remains constant over the full range of
pump bandwidths considered. For this reason, in the case of
TOSPDC, no difference is expected in the emitted flux, be-
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tween the monochromatic- and pulsed-pump regimes (while
maintaining the average pump power constant).

In the monochromatic-pump regime, evaluation of the
SFWM conversion efficiency through Eq. (20) predicts a
value of ηcw=3.05×10−11 [indicated by a yellow circle
in Fig. 5(a)]. Likewise, we calculate the TOSPDC con-
version efficiency through Eq. (25), from which we obtain
ηcw=7.10×10−19. This value is represented in Fig. 5(a)
by the green square. It is graphically clear that the conver-
sion efficiency values forσ 6= 0 [calculated from Eq. (16)
and Eq. (22)] approach the corresponding values in the
monochromatic-pump limit [calculated from Eq. (20) and
Eq. (25)].

4.2. Pump power dependence

We now turn our attention to the pump-power dependence of
the conversion efficiency for the two processes, while main-
taining the pump bandwidth and other source parameters
fixed. We compute the conversion efficiency as a function
of the average pump power, which is varied between1 and
180 mW. We assume a fiber length ofL = 1 cm, a pump
bandwidth ofσ = 23.5 GHz (for the pulsed-pump case, cor-
responding to a Fourier-transform-limited temporal duration
of 100 ps) and a repetition rate ofR = 100 MHz.

Plots obtained numerically from our expressions
[Eqs. (16) and (22)] are presented in Fig. 5(b), whereη is
expressed in a logarithmic scale. The black solid line and the
magenta dashed-dotted line correspond to SFWM and TOS-
DPC, respectively. The SFWM conversion efficiency in the
monochromatic pump limit is obtained through Eq. (20) and
is indicated in Fig. 5(b) by the blue dashed line. As expected,
the SFWM conversion efficiency is considerably higher in
the pulsed-pump regime than in the monochromatic-pump
regime. Note that TOSPDC efficiency values, obtained from
Eq. (25) for the monochromatic-pump regime, are coinci-
dent with those obtained through Eq. (22) for the pulse-pump
regime (see the discussion in the previous subsection).

Figure 5(b) shows that the SFWM conversion efficiency
is linear with pump power (which is not graphically evi-
dent due to the logarithmic scale). Note that this linear de-
pendence becomes quadratic for the flux vs average pump
power. For the TOSPDC process, the situation is different:
the conversion efficiency is constant with respect to the aver-
age pump power, while the emitted flux varies linearly with
the pump power. As has already been remarked, this behavior
is related to the fact that two pump photons are annihilated
per generation event for SFWM, while a single pump pho-
ton is annihilated per generation event for TOSDPC. In fact,
this represents one of the essential advantages of SFWM over
SPDC photon-pair sources in terms of the possibility of ob-
taining a large emitted flux, for sufficiently high pump pow-
ers. Note that the process of TOSPDC has important similar-
ities with the process of SPDC; in both cases, the conversion
efficiency is constant with respect to the pump power and to
the pump bandwidth (within the phasematching bandwidth).

At the highest average pump power considered, Eq. (16)
predicts a SFWM conversion efficiency of2.01×10−9, which
can be contrasted with the value obtained in the monochro-
matic pump limit through Eq. (20) (ηcw = 3.05 × 10−11).
In turn, the TOSPDC conversion efficiency remains constant
within the full pump-power range considered with a value of
7.11 × 10−19, which is nine orders of magnitude lower than
the conversion efficiency of SFWM with a pulsed pump.

4.3. Fiber length dependence

We now turn our attention to the fiber-length dependence of
the conversion efficiency for the two processes, while main-
taining other source parameters fixed. For this comparison
we assume an average pump power ofp = 180 mW and,
for the pulsed case, a pump bandwidth ofσ = 23.5 GHz,
and a repetition rate ofR = 100 MHz. For this study
we vary the fiber length from 0.1 to 10 cm, and as before
we assume a fiber radius ofr = 0.395 µm; recent exper-
imental work shows that it is possible to obtain a uniform-
radius fiber taper of∼ 445 nm radius over a length of
9 cm [27]. The results obtained by numerical evaluation
of Eqs. (16) and (22) in the pulsed-pump regime are shown
graphically by the black solid line for SFWM and by the
magenta dash-dot line for TOSPDC. The corresponding re-
sults obtained for the monochromatic-pump regime by nu-
merical evaluation of Eqs. (20) and (25) are presented in
Fig. 5(c) by the blue dashed line for SFWM, while the curve
for TOSDPC overlaps the curve calculated for the pulsed
case (magenta dash-dot line). As expected, the conversion
efficiency exhibits a linear dependence on the fiber length
for both processes (which is not evident graphically due
to the logarithmic scale). For the longest fiber considered
(L=10 cm), the SFWM conversion efficiency is2.04× 10−8

for the pulsed-pump regime andηcw = 3.09 × 10−10 for
the monochromatic-pump regime, while the TOSPDC con-
version efficiency is7.13 × 10−18 (for both the pulsed- and
monochromatic-pump regimes). Thus, for this specific fiber,
pulsed-pumped SFWM leads to two orders of magnitude
greater conversion efficiency than monochromatic-pumped
SFWM, while it leads to nine orders of magnitude greater
conversion efficiency than TOSDPC.

5. Conclusions

In this paper we have presented a comparative analy-
sis of two different types of source based on sponta-
neous non-linear processes in optical fibers: photon-pair
sources based on spontaneous four wave mixing (SFWM),
and photon-triplet sources based on spontaneous third-order
parametric downconversion. We have restricted our study
to degenerate-pumps SFWM and to TOSPDC involving
frequency-degenerate photon triplets. Likewise, we have as-
sumed that all participating fields for each of the two types of
source are co-polarized.
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We have presented expressions for the quantum state of
SFWM photon-pairs and TOSPDC photon-triplets, and we
have discussed differences in terms of phasematching prop-
erties for the two processes. We have presented expressions
for the expected source brightness for both processes, and for
both: the pulsed-pump and monochromatic-pump regimes.
Likewise, we have presented plots of the joint spectral inten-
sity for both processes, which elucidate the type and degree
of spectral correlations which underlie the existence of spec-
tral entanglement in each of the two cases. We have also
presented the results of a comparative numerical analysis of
the attainable source brightness for each of the two sources,
as a function of key experimental parameters including pump
bandwidth, pump power, and fiber length.

From our study it is clear that SFWM sources can be
much brighter than TOSPDC sources. This is due on the one
hand to the far better degree of overlap between the four par-
ticipating modes which can be attained for SFWM, for which

all fields propagate in the same fiber mode (HE11), unlike
TOSPDC for which our phasematching strategy requires the
use of two different fiber modes. On the other hand, for suf-
ficiently high pump powers, this is due to the fact that for
SFWM the conversion efficiency scales linearly with pump
power and bandwidth while for TOSPDC the conversion ef-
ficiency remains constant with respect to these two parame-
ters. Thus, unlike the case of TOSPDC, the use of short pump
pulses can significantly enhance the SFWM conversion effi-
ciency. We expect that these results will be of use for the de-
sign of the next-generation of photon-pair and photon-triplet
sources for quantum-information processing applications.
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