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Abstract
We present a theoretical and experimental analysis of the joint effects of the transverse electric
field distribution and of the nonlinear crystal characteristics on the properties of photon pairs
generated by spontaneous parametric downconversion (SPDC). While it is known that for a
sufficiently short crystal the pump electric field distribution fully determines the joint
signal–idler properties, for longer crystals the nonlinear crystal properties also play an
important role. In this paper we present experimental measurements of the angular spectrum
(AS) and of the conditional angular spectrum (CAS) of photon pairs produced by SPDC,
carried out through spatially resolved photon counting. In our experiment we control whether
or not the source operates in the short-crystal regime through the degree of pump focusing,
and explicitly show how the AS and CAS measurements differ in these two regimes. Our
theory provides an understanding of the boundary between these two regimes and also predicts
the corresponding differing behaviors.

(Some figures may appear in colour only in the online journal)

1. Introduction

The process of spontaneous parametric downconversion
(SPDC) [1] has been used for the generation of paired photons
in many recent experiments, ranging from fundamental tests
of quantum mechanics [2] to implementations of quantum
information processing protocols [3]. In this process a laser
pump beam illuminates a second-order nonlinear crystal,
where individual pump photons are annihilated giving rise to
the emission of signal and idler photon pairs. In particular,
these photon pairs exhibit a rich transverse spatial structure [4,
5], which forms the subject matter of the present study. Photon
pairs entangled in the spatial degree of freedom, including the
specific case of entanglement in orbital angular momentum [6,
7], are of interest because each photon can be described by a

multi-dimensional Hilbert space [8–13] compared to the case
of polarization which is limited to a dimension of two [14].

Spatially resolved single-photon detection in the trans-
verse momentum domain yields the angular spectrum (AS)
of the SPDC bi-photon field, which for type-I SPDC has
a well-known annular shape. If a single photon is detected
at a certain location in the AS with transverse momentum
value k̃⊥, the conjugate photon can be detected in coincidence
around the location which fulfils transverse momentum
conservation, i.e. with transverse momentum value−k̃⊥. This
forms the basis for a second measurement of interest, in which
the idler photon is detected at a certain transverse momentum
value and where spatially resolved coincidence detection of
the signal photon yields the conditional angular spectrum
(CAS), which may be thought of as the shape of the heralded
signal-mode photon [16]. An idealized plane-wave pump in
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the process of SPDC leads to strict transverse momentum
correlations, so that each individual idler-mode k-vector in the
AS is correlated to a single signal-mode k-vector, yielding
a delta-like CAS. In contrast, for a realistic experimental
situation involving finite transverse dimensions of the pump
beam, these transverse momentum correlations are no longer
strict, i.e. each individual idler-mode k-vector is correlated
with a spread of signal-mode k-vectors, so that the CAS
acquires a certain width.

The properties of spatially entangled SPDC photon pairs,
including the AS and CAS, are determined on the one hand
by the transverse electric field distribution of the pump and on
the other hand by the nonlinear crystal properties, including
crystal dispersion, length and Poynting vector walk off.
The manner in which the pump transverse spatial properties
are mapped to those of the SPDC photon pairs has been
studied in a number of papers [17, 18, 5, 9, 19, 16, 20].
It is known that for a sufficiently short crystal, the spatially
resolved rate of signal–idler coincidences is fully determined
by the pump transverse electric field distribution [17, 18,
15, 21–23, 49, 10, 24]. Within this limit, it thus becomes
straightforward to engineer photon pairs to have a particular
spatial character, as determined by the pump. This forms
the basis for a large body of work, which seeks to exploit
particular types of spatial correlations present in SPDC photon
pairs. Indeed, the short-crystal approximation has been used
in the context of the implementation of quantum information
processing protocols, in experiments which exploit the orbital
angular momentum of SPDC photon pairs [35–40], in ghost
imaging and diffraction experiments [41–46], as well as in
a variety of other recent experiments [25–34, 47]. However,
for a sufficiently long crystal or for a sufficiently focused
pump beam, the photon-pair properties are no longer solely
determined by the pump spatial distribution. The objective
of this paper is to provide an understanding of the SPDC
photon-pair properties in general, including situations for
which the short-crystal approximation can and cannot be used,
as well as of the boundary between these two regimes.

We have performed a detailed study of the CAS and of
how the AS properties are derived from those of the CAS,
paying special attention to crystal length effects. We show that
the CAS is given by the product of two separate functions,
one which is related to the pump AS and another one which
is related to the properties of the nonlinear crystal, including
length, dispersion and Poynting vector walkoff. In our study of
crystal length effects, we show that a critical length Lc exists,
which depends on the degree of pump focusing, so that for
L < Lc, crystal length effects can be neglected, and the CAS
is fully determined by the pump AS; we show that in this case
the CAS is a displaced version of the pump AS. We also show
that for L > Lc, the CAS is determined both by the pump AS
and the crystal properties. In this latter case, we show that
the CAS becomes elongated to a degree related to the crystal
length and tilted according to the location of the fixed detector,
leading to azimuthal distinguishability.

We have carried out experimental measurements of the
AS and CAS, finding excellent agreement with numerical
simulations based on our SPDC theory, which is general

enough to include essentially all experimental aspects
of interest, i.e. an arbitrary pump spatial distribution,
spatial and spectral filtering of the SPDC photons, crystal
dispersion, Poynting vector walkoff and the spatial extent
of detectors. In particular, we have performed a careful
experimental/numerical exploration of the AS and of the
CAS, where we vary the degree of pump focusing [48–54]
in order to explore and contrast the resulting behavior in
the L < Lc and L > Lc regimes. Our theory presented
here explains the azimuthal distinguishability evident in
the CAS measurements of [55], making it clear that this
distinguishability is a crystal length effect which appears only
for sufficiently long crystals (L > Lc). This paper leads to
a quantitative and qualitative understanding, not available in
previous works, of how the spatial character of SPDC photon
pairs is determined by nonlinear crystal properties in addition
to the pump AS, which should be useful for the design of
photon-pair sources for specific applications.

2. Theory

The quantum state which describes photon pairs produced by
SPDC is given by |9〉 = |vac〉 + η|92〉, with

|92〉 =

∫
dωs

∫
d2k⊥s

∫
dωi

∫
d2k⊥i F(ωs,k⊥s , ωi,k⊥i )

× â†(ωs,k⊥s )â
†(ωi,k⊥i )|vac〉 (1)

where η is a constant related to the conversion efficiency,
F(ωs,k⊥s , ωi,k⊥i ) represents the joint amplitude, â†(ωµ,k⊥µ )
(with µ = s, i) is the creation operator associated with the
signal and idler modes, expressed as a function of the
transverse wavevector k⊥µ and frequency ωµ, and where |vac〉
is the vacuum. Taking into account spectral filters fµ(ω)
applied to the signal and idler modes (µ = s, i), the joint
amplitude is given by

F(ωs,k⊥s , ωi,k⊥i ) = As`(ωs)Ai`(ωi) fs(ωs)fi(ωi)

× φ(ωs,k⊥s , ωi,k⊥i )α(ωs + ωi). (2)

In equation (2), we have used the definitions `(ω) ≡√
h̄ω/[2(2π)3ε0 n(ω)2], where ε0 is the permittivity of free

space and n(ω) is the index of refraction, and Aµ ≡ k′µkµ/kµz.
φ(ωs,k⊥s , ωi,k⊥i ) is the phase matching function and α(ω)
is the spectral amplitude of the pump. kµz represents the
longitudinal components of the signal and idler k-vectors,
given by kµz = (k2

µ−|k
⊥
µ |

2)1/2, with kµ = n(ωµ)ωµ/c. Primed
quantities denote frequency derivatives. Let us define the
transverse vector sum k⊥+ = k⊥s + k⊥i , in terms of which the
phase matching function can be expressed as

φ(ωs,k⊥s , ωi,k⊥i ) = S(k⊥+)sinc
(

1
2 L1k(ωs,k⊥s , ωi,k⊥i )

)
× exp

(
i 1

2 L1k(ωs,k⊥s , ωi,k⊥i )
)
. (3)

Here, the function S(k⊥) represents the pump transverse
wavevector amplitude distribution, evaluated in the transverse
wavevector sum k⊥+, so that |S(k⊥)|2 represents the pump AS.
The phase mismatch 1k(ωs,k⊥s , ωi,k⊥i ) can be expressed
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in terms of the pump wavenumber kp, the Poynting vector
walkoff angle experienced by the pump, ρ0, and the
y-component of the k⊥+ vector as

1k(ωs,k⊥s , ωi,k⊥i ) = kp −
|k⊥+|

2

2 kp

− ksz − kiz − k⊥+y tan ρ0. (4)

Note that here we have assumed without loss of generality
that walkoff occurs on the plane zy. In this paper we
are interested in studying the transverse spatial structure
of the emitted photon pairs, specifically through spatially
resolved photon counting experiments. Standard Fourier
optics techniques may be used in order to probe this structure
in either the transverse position or the transverse wavevector
momentum domains. Specifically, a map of counts as a
function of the signal- and idler-mode transverse wavevector
may be obtained by a detection scheme with transverse spatial
resolution on the Fourier plane located a distance of one focal
length f from a lens of focal length f , itself placed a distance
f from the SPDC crystal. If two detectors are placed on the
Fourier plane so that they collect photons with transverse
wavevectors k⊥s and k⊥i and frequencies ωs and ωi, the rate
of signal and idler coincidences is given by

Rc(ωs,k⊥s , ωi,k⊥i ) = 〈92|a
†(ωs,k⊥s )a

†(ωi,k⊥i )

× a(ωi,k⊥i )a(ωs,k⊥s )|92〉. (5)

In a given experimental situation, this rate of detection
should be integrated over the transverse wavevector and
spectral acceptance of the detectors.

We will specialize our discussion to the case of a
continuous-wave pump, for which the pump may be regarded
as essentially monochromatic at frequency ωp, and |α(ω)|2

may be replaced by δ(ω − ωp). Assuming detectors with
ideal transverse wavevector resolution, and integrating over
the spectral content of the photon pairs, it may be shown that
the rate of coincidences can then be written as follows:

R(0)c (k⊥s ,k⊥i ) = |S(k
⊥
+)|

2L (k⊥s ,k⊥i ). (6)

Thus, the rate of coincidences can be factored into
two contributions. On the one hand, |S(k⊥+)|

2 is related to
transverse phase matching and is fully determined by the
pump AS. On the other hand, L (k⊥s ,k⊥i ) is related to
longitudinal phase matching and is determined by the crystal,
including the effects of the crystal length, dispersion and
Poynting vector walkoff. This function is given by

L (k⊥s ,k⊥i ) =
∫

dωi
k′sks

ksz

k′iki

kiz
|f (ωp − ωi)|

2
|f (ωi)|

2

× sinc2
[

1
2

L1k(ωp − ωi,k⊥s , ωi,k⊥i )
]
.

(7)

Note that while kµ and k′µ (with µ = s, i) are functions
of the signal and idler frequencies, ωp − ωi and ωi, kµz
are functions of these frequencies and of the corresponding
transverse wavevector components. Let us consider the limit
in which the pump beam is in the form of a plane wave, with

transverse wavevector k⊥zp = 0. In this case, the function
|S(k⊥+)|

2 becomes

|S(k⊥+)|
2
= δ(k⊥+) = δ(k

⊥
s + k⊥i ). (8)

This equation tells us that if a single idler photon is
detected at k⊥i = k⊥i0, the conjugate photons may be found at
k⊥s =−k⊥i0 so that transverse momentum is exactly conserved.
Note, however, that the probability of observing photon pairs
at two such conjugate points is limited by the function
L (−k⊥i0,k⊥i0), i.e. by the existence of longitudinal phase
matching at these two transverse wavevector values.

Let us now consider the more general case where the
pump is given by a superposition of plane waves, i.e. for
which the pump AS is no longer a delta function. In this case,
if a single photon is detected at k⊥i = k⊥i0 on the transverse
wavevector space, the conjugate photons may be found around
k⊥s = −k⊥i0 with an uncertainty which grows with the width
of the pump AS. We then refer to the function Rc(k⊥s ,k⊥i0),
which determines this uncertainty, as the CAS of the signal
photon, conditioned on the detection of a single idler photon
with transverse wavevector k⊥i0. The function |S(k⊥s + k⊥i0)|

2,
which for a sufficiently broad L (k⊥s ,k⊥i0) represents the
signal-photon CAS, is a displaced version of the pump AS,
centered at k⊥s = −k⊥i0.

Specifically, let us consider the case where the pump
beam is in the form of a Gaussian beam with widths Wx and
Wy along the x and y directions. In this case, |S(k⊥+)|

2 is given
by

|S(k⊥+)|
2
= exp

(
−

1
2 {W

2
x (k
⊥
+x)

2
+W2

y (k
⊥
+y)

2
}

)
, (9)

in terms of the x and y components of the vector k⊥+. As
the pump beam is increasingly focused, corresponding to
smaller values of Wx and Wy, the pump AS becomes broader
also leading to a broader CAS, as limited by the function
L (k⊥s ,k⊥i ). Thus, the strict one-to-one transverse momentum
signal and idler correlations which appear in the plane-wave
pump limit become weaker as the pump is increasingly
focused.

So far we have considered idealized detection of
the signal and idler modes involving a single transverse
wavevector value. However, in a realistic experimental
implementation, the transverse dimensions of the detectors
used for the signal and idler modes are non-vanishing.
Suppose that the transverse wavevector acceptance of each
detector is characterized by functions us(k⊥−k⊥s ) and ui(k⊥−
k⊥i ) for the signal and idler modes, respectively, where each of
the detectors is centered at k⊥ = k⊥µ (with µ = s, i). Then, the
resulting coincidence rate obtained with these detectors can be
written as

Rc(k⊥s ,k⊥i ) =
∫

d2k̃⊥s

∫
d2k̃⊥i R(0)c (k̃⊥s , k̃⊥i )

× us(k̃⊥s − k⊥s )ui(k̃⊥i − k⊥i ). (10)

Let us now turn our attention to single-channel counts,
i.e. those obtained through a single detector. The rate of
single-channel counts obtained by a detector placed so that

3
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it selects single photons with transverse wavevector k⊥s and
frequency ωs, is given by

Rs(ωs,k⊥s ) = 〈92|a
†(ωs,k⊥s )a(ωs,k⊥s )|92〉. (11)

In a given experimental situation, this rate of detection
should be integrated over the transverse wavevector and
spectral acceptance of the detector. It may be shown that under
the same conditions in which equation (6) was derived, the
rate of single-channel detection is related to the CAS through
the following simple relationship:

R(0)s (k⊥s ) =
∫

d2k̃⊥i R(0)c (k⊥s , k̃⊥i ). (12)

The above quantity represents the transverse wavevector
distribution, or AS, of the SPDC photon pairs. Thus,
according to equation (6), the SPDC AS evaluated at a
wavevector k⊥s = k⊥s0 is given by the CAS R(0)c (k⊥s0,k⊥i )
integrated over all k⊥i values.

When evaluating equation (12) for type-I non-collinear
SPDC one obtains a well-known annular structure on the
k⊥s plane. In the next section, we will show experimental
results, as well as simulations based on equation (12), which
show this annular structure, and how it differs in the two
regimes of interest, namely those for which the short-crystal
approximation can and cannot be used.

In the case of a non-ideal detector characterized by an
acceptance function us(k⊥ − k⊥s ), the signal-mode AS may
be written as

Rs(k⊥s ) =
∫

d2k̃⊥s

∫
d2k̃⊥i R(0)c (k̃⊥s , k̃⊥i )u(k̃

⊥
s − k⊥s ). (13)

For the discussion of the experimental results, below, it
is useful to consider the single-channel and double-channel
detection rates as a function of the transverse coordinates on
the Fourier plane, behind an f –f optical system, i.e. Rs(ρ

⊥
s )

and Rc(ρ
⊥
s , ρ

⊥
i ). If the signal and idler modes each involve

a single emission frequency, then these functions are simply
scaled versions of their counterparts in the wavevector
domain, according to the transformation k⊥µ = [ω/(c f )]ρ⊥µ
(with µ = s, i), where f is the focal length used in the f –f
optical system, i.e. each transverse position on the Fourier
plane corresponds to a specific transverse momentum value.
However, because this transformation is frequency dependent,
if the emitted modes contain a spread of frequencies the rate
of single-channel detection in the position and wavevector
domains are not simply scaled versions of each other. When
carrying out simulations, care must be taken to integrate the
functions Rs(ρ

⊥
s ) and Rc(ρ

⊥
s , ρ

⊥
i ) over the detected spectral

components.
In figure 1 we show the geometry of the SPDC emission

annulus for non-collinear type-I SPDC from a negative
uniaxial, specifically beta barium borate (BBO), crystal. We
denote by Ekp the wavevector corresponding to the central
direction of propagation of the pump beam, by ES the pump
Poynting vector, and by EC the crystal axis. Note that the
angular separation between ES and Ekp is due to Poynting vector
walkoff. We also show two pairs of signal and idler rays born
at two distinct planes, projected on the y–z and x–z planes.

Figure 1. Schematic of emission annulus with various source
characteristics indicated.

As may be appreciated from the figure, because photon pairs
are born along the path of ES, on the y–z plane the two upper
rays have a greater separation from ES compared to the two
lower rays, while the two corresponding separations are equal
on the x–z plane. This leads to an asymmetry in the emission
annulus. Note that while for the above argument we have
implicitly assumed a transversely well-localized pump beam,
the pump beam in fact has horizontal and vertical widths Wx
and Wy. If these widths are considerably larger that the lateral
ray displacement L tan ρ0, the annulus asymmetry is in fact
suppressed. In other words, this asymmetry is visible only for
a sufficiently focused beam so that Wx,Wy . L tan ρ0. Note
that this asymmetry, mediated by pump focusing and Poynting
vector walkoff, is the origin of so-called ‘hot spots’ which
have been observed in the spatial flux distribution of type-II
parametric downconversion [56].

In figure 2 we show simulations of the AS for the case
of a Gaussian beam pump, based on numerical integration of
equations (6) and (12). The AS is shown as a contour plot
for two different degrees of focusing (Wx = 182.0 µm,Wy =

189.0 µm for panel (a) and Wx = 38.9 µm,Wy = 34.7 µm for
panel (b); note that these choices of beam widths correspond
to experimental situations presented below). For these plots
we have assumed a 1 mm long BBO crystal cut at 29.3◦,
for non-collinear type-I phase matching. Note that while the
annulus is symmetric, with a constant width, in the case of
panel (a), it becomes asymmetric with an azimuthally-varying
width for panel (b), as indeed is to be expected from the
argument in the previous paragraph. This annulus asymmetry
apparent in the spatial distribution of the single-channel
counts also translates into azimuthal distinguishability of
the photon pairs around the annulus (i.e. into an azimuthal
variation of the orientation and width of the CAS) [55]. In
order to illustrate this, in both panels of figure 2 we also show
the CAS corresponding to seven points (shown as white dots)
chosen to be angularly equidistant on the left-hand side of the
AS. For three of these points (top, left and bottom) we show in
addition plots of the |S(k⊥+)|

2 and L (k⊥s ,k⊥i ) functions, the
product of which yields the CAS. Note that the AS asymmetry
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Figure 2. Contour plot of the AS for two different experimental
situations (panel (a) Wx = 182.0 µm and Wy = 189.0 µm and panel
(b) Wx = 38.9 µm and Wy = 34.7 µm), along with white dots
covering one half of the annulus, angularly equi-spaced by 30◦,
along with the CAS corresponding to each of these white dots. For
each of the two panels we also show, for the CAS corresponding to
a fixed detector on the bottom, left and top of the AS, plots of the
functions |S(k⊥s + k⊥i )|

2 and L (k⊥s ,k⊥i ) the product of which
yields the CAS.

may be explained in terms of clipping of the |S(k⊥+)|
2 function

by the L (k⊥s ,k⊥i ) function. For example, for a fixed detector
at the top of the annulus, the corresponding CAS in a focused
pump regime is narrowed by the horizontal structure of the
L (k⊥s ,k⊥i ) function. Thus, the AS at the top of the annulus
given as the integral over all k⊥i values of the CAS will have
a lower value compared, say, to the diametrically opposed
portion of the annulus where this clipping does not occur.
As will be discussed below, while panel (a) corresponds to
the short-crystal L < Lc regime, panel (b) corresponds to the
L > Lc regime.

It is interesting to relate the CAS in the spontaneous
case which we study in this paper, to the size of speckles
obtained in the spatial intensity distribution in the case of
high-gain, i.e. stimulated parametric downconversion [57–61,
63]. Indeed, SPDC photons with a given transverse angular
momentum k⊥ within the AS can serve as a seed for
parametric amplification, leading to the appearance of coupled
speckles at k⊥ and −k⊥. According to the analysis in [57,
61], the mean speckle area (also sometimes referred to as

the coherence area), is inversely proportional to the pump
beam transverse area, an effect which mimics the observed
dependence of the area in transverse momentum space of our
CAS on the focusing strength.

Note on the one hand that the function L (k⊥s ,k⊥i )
depends only on crystal properties; in particular, its width
is determined by the crystal length L with longer crystals
yielding narrower widths. Note on the other hand that the
function |S(k⊥+)|

2 depends only on pump properties, and
its width corresponds to the pump angular width, i.e. it is
determined by the degree of pump focusing. Thus, for a given
degree of pump focusing there is a critical crystal length Lc
such that for L < Lc the function L (k⊥s ,k⊥i ) is wider than
the function |S(k⊥+)|

2 so that the latter fully determines the
CAS. In contrast, for L > Lc, the CAS is determined by
both of these functions together, i.e. by crystal properties
in addition to pump properties. Note from figure 2 that a
plot of the function L (k⊥s ,k⊥i ) yields a stripe which is
horizontally oriented at the top and bottom of the annulus,
with a larger width at the top, and which is oriented diagonally
at other annulus locations, with a maximum tilt at the left and
right. This azimuthal variability of the function L (k⊥s ,k⊥i )
is the origin of the azimuthal distinguishability of photon
pairs. In particular, areas outside of the structure of function
L (k⊥s ,k⊥i ), which may be diagonal, are ‘removed’ from the
plot of function |S(k⊥s + k⊥i )|

2 and can yield a narrowed and
tilted CAS.

It is thus interesting to consider the AS and CAS in the
short-crystal regime (L � Lc). In this limit, the L (k⊥s ,k⊥i )
function is much broader than the |S(k⊥s + k⊥i )|

2 function, so
that the CAS is determined by the latter, according to

R(0)c (k⊥s ,k⊥i ) ≈ |S(k
⊥
+)|

2. (14)

Note that because the CAS in equation (14) depends
only on the pump AS, it is azimuthally invariant. It is also
interesting to consider the amplitude underlying this CAS. In
the case of ideal idler detection involving a single transverse
wavevector k̃⊥i and frequency ω̃i, and within the short-crystal
regime, the state describing the heralded signal-mode single
photon may be written as follows:

|9〉s = κ

∫
dk⊥s AsS(k⊥s + k̃⊥i )|ωp − ω̃i,k⊥s 〉 (15)

where κ is a normalization constant. It may be seen that under
these conditions the signal-mode single-photon wavevector
amplitude constitutes a displaced version of the pump
wavevector amplitude, centered at −k̃i. Also, in the L � Lc
regime, L (k⊥s ,k⊥i ) is a slowly varying function and may be
considered a constant for the purposes of the integration in
equation (12). Thus, the AS is given as follows, where we use
the fact that the integral of the pump AS over all transverse
wavevectors represents the pump power, i.e. a constant,

R(0)s (k⊥s ) ∝ L (k⊥s ,−k⊥s ). (16)

Thus, in the short-crystal regime, while the CAS depends
only on the transverse phase matching properties through the
function |S(k⊥+)|

2, the AS depends only on longitudinal phase
matching properties through the function L (k⊥s ,−k⊥s ). In
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Figure 3. In panel (a) we show the widths of the functions
L (k⊥s ,k⊥i ) and |S(k⊥s + k⊥i )|

2 as a function of the crystal length,
for a fixed value of k⊥i corresponding to the top of the AS, for
different values of the pump beam radius indicated in microns
within the black squares. In panel (b) we show the condition L = Lc
plotted in the parameter space {W,L} obtained from the
intersections in panel a. We also indicate the four experimental
measurements (see below) with labeled black dots.

order to make the previous discussion more quantitative, let
us define k̃⊥i = (0, k⊥iy) with k⊥iy > 0 chosen so as to maximize
the single-channel counts. Then, we can define the 1/e full
widths of the functions |S(k⊥s + k̃⊥i )|

2 and L (k⊥s , k̃⊥i ), along
the ky direction, as δkS and δkL , respectively. Figure 3(a)
shows a plot of δkL as a function of the crystal length
obtained numerically (continuous line) for a BBO crystal with
a 29.3◦ cut angle; note that longer crystals lead to a smaller
width δkL . Figure 3(a) also shows δkS for the case of a
Gaussian beam pump, plotted with dashed lines for different
values of W = Wx = Wy, (indicated, in microns, within the
black rectangles). We then define the critical crystal length Lc,
for a given pump beam radius W, as that for which δkL = δkS.

Figure 3(b) represents the parameter space {W,L}, where
we have assumed Wx = Wy = W, and where we include a
plot of the condition L = Lc, obtained numerically, which
turns out to have an essentially linear dependence on W;
note that this condition cannot easily be obtained analytically.

This line divides the parameter space into two parameter
subspaces; the right-hand subspace represents the set of all
experimental configurations in the regime L < Lc, while
the left-hand subspace represents the set of all experimental
configurations in the regime L > Lc. Also shown in the plot
are four dots indicating our four experimental configurations
(see discussion below; in particular dots 1 and 4 correspond
to panels (a) and (b) of figure 2). Thus, on the one hand,
in the limit of a plane-wave pump, Lc → ∞, and the CAS
is fully determined by the pump properties without any
influence of the crystal properties regardless of the crystal
length. In this case, the CAS exhibits no variations around
the SPDC annulus, and the photon pairs are thus azimuthally
indistinguishable. On the other hand, a greater degree of
focusing (corresponding to smaller values of W), leads to
a smaller critical crystal length Lc. Thus, a sufficiently
focused pump and/or a sufficiently long crystal implies that
photon pairs are in the regime L > Lc, in which case the
CAS becomes elongated and tilted leading to azimuthal
distinguishability.

Related results were obtained in [62]. In this paper, it
was found theoretically that for a sufficiently short crystal,
and/or for sufficiently small emission angles, the transverse
variation of the crystal nonlinearity–pump amplitude product
determines the CAS, while the AS is in this case determined
solely by the nonlinear crystal properties. Conversely, the
paper by Burlalkov et al reports that for a sufficiently long
crystal, and/or for sufficiently large emission angles, the
nonlinear crystal properties determine the CAS while the AS
becomes sensitive to the transverse variation of the crystal
nonlinearity–pump amplitude product.

3. Experiment

The objective of our experimental work presented here is
to characterize the angular distribution of the SPDC photon
pairs, both in terms of single-channel and double-channel
detection events where we use variations in the degree of
pump focusing to select whether the source is in the L < Lc or
L > Lc regime.

Our experimental setup is shown schematically in
figure 4. A beam from a diode laser (DL) centered at
406.8 nm is used as a pump for the SPDC process. This
beam is spatially filtered by coupling into a single-mode
fiber (not shown in the figure) and using the collimated
out-coupled beam, with 23 mW power. A blue colored glass
filter (Schott BG-39; not shown in the figure) is used in
order to suppress non-ultraviolet background photons. The
resulting beam illuminates a 1 mm-thick β-barium borate
(BBO) crystal, cut at a phase matching angle of 29.3◦ for
type-I non-collinear phase matching so that the degenerate
photon pairs produced propagate outside the crystal at an
angle of 3.6◦ with respect to the axis defined by the pump
beam. Pump photons are suppressed by transmitting the signal
and idler modes through a long-pass filter with a cut-on
wavelength of 488 nm (F1), followed by a bandpass filter
centered at 810 nm with a 10 nm bandwidth (F2); both of
these filters are placed normal to the axis defined by the pump
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Figure 4. Experimental setup used for measuring the AS, and the
CAS of SPDC photon pairs.

beam. A lens with a focal length of 10 cm (L2) is placed at a
distance of 10 cm from the crystal, thus defining the Fourier
plane a further 10 cm from the lens.

As discussed in section 2, spatially resolved photon
counting may be implemented with the help of spatial filters
placed on the Fourier plane, leading to single-photon detectors
(APD1 and APD2). In our experiment, we have used for
this purpose the fiber tips of large-diameter optical fibers
(OF1 and OF2). Note that coupling of photon pairs into
single-mode fibers is described through the mathematical
overlap between the two-photon state and the fiber collection
modes [54]. However, in the present case where fibers are
highly multi-mode, the incoherent sum of the joint spectrum,
projected onto all combinations of supported modes makes
detection phase-insensitive. While in the case of the AS
measurement a single fiber tip is used, in the case of the CAS
measurement two separate fiber tips are used, one for each of
the signal and idler modes. The fiber tips are mounted so that
they can be displaced on the transverse plane, along the two
perpendicular directions: x, parallel to the optical table, and
y, normal to the optical table. In the AS case, the fiber tip
displacement is carried out with computer-controlled linear
motors (50 nm resolution and 1.5 cm travel), and the fiber
used has a 200 µm diameter core. In the CAS case, one of the
fiber tips (corresponding to the idler mode) can be translated
manually along the two axes, while the other fiber tip can be
translated with our computer-controlled linear motors. Both
of the fibers used have a 200 µm diameter core.

For the AS measurement, the fiber tip scans a sufficient
transverse area in order to encompass the entire emission
annulus. For the CAS measurement, a location k⊥i0 for
the idler-mode fiber tip is selected on the SPDC annulus,
which determines by transverse momentum conservation the
expected location, −k⊥i0, for the conjugate signal photons.
In our experiments we have chosen k⊥i0, with a vanishing y
component kiy0, and with a negative value of kix0 (left side of
the SPDC cone looking into the crystal) chosen so that the
number of counts is maximized. The signal-mode fiber tip is
then scanned over an area around −k⊥i0.

Table 1. Vertical (Wy) and horizontal (Wx) beam widths, at the
beamwaist, measured for each of the four measurements.

Measurement Wx (µm) Wy (µm) Lc (mm)

(1) No lens used 182.0 189.0 4.1
(2) f1 = 30 cm 67.5 64.8 1.4
(3) f1 = 10 cm 56.4 47.9 1.1
(4) f1 = 6 cm 38.9 34.7 0.8

The optical fibers (a single one for the AS measurement,
and two of them for the CAS measurement) lead to fiber-
coupled silicon single-photon counting modules (SPCMs).
The electronic pulses generated by the SPCMs are inverted,
attenuated and discriminated to produce standard nuclear
instrumentation module (NIM) pulses of 7 ns duration. These
signals are, on the one hand, directly counted with pulse
counters (C1 and C2 in figure 4) to yield single-channel
counts. On the other hand, these signals form the inputs for an
AND gate (&) which produces an output pulse when the two
inputs are temporally overlapped. The output from the AND
gate is counted by a third pulse counter (C3), to obtain the
coincidence counts. We have in the region of 200 background
counts per second, including dark counts, in each of our two
detectors. This level of background counts leads to essentially
no accidental coincidence counts related to dark counts.

We have carried out AS and CAS measurements for
four different pump beam focusing strengths. These situations
correspond to (i) no focusing lens used, and to a focusing
lens with the following focal lengths used: (ii) f1 = 30 cm,
(iii) f1 = 10 cm, and (iv) f1 = 6 cm. In all cases, the lens is
placed a distance of one focal length from the crystal. Note
that the resulting pump beamwaist is not necessarily precisely
centered with respect to the crystal; while in our theory, the
AS and CAS depend on the beam radii Wx and Wy at the
beamwaist, these functions do not depend on the location of
the beamwaist with respect to the crystal’s center plane [54].
The values of Wx and Wy, directly measured by recording
the beam profile with a CCD camera at a number of distinct
propagation planes and fitting to the standard beam radius
versus propagation distance expression for Gaussian beams,
are shown in table 1, along with the resulting critical length Lc.
Note that since the crystal length used is 1 mm, measurements
one and two are in the L < Lc regime, while measurement
three is essentially on the boundary and measurement four is
in the L > Lc regime. Note also that the choice of parameters
for each of the four measurements is indicated in figure 3(b)
by labeled dots, where the horizontal coordinate is determined
by the corresponding Wy value from table 1; indeed, for a fixed
detector at the top of the AS, the CAS depends largely on Wy.
The values of Wx and Wy shown in the table were used for
the numerical simulations of the AS and of the CAS to be
presented below for each of the measurements (one to four).

For each of these four cases, we have carried out a
measurement of the AS, and a corresponding numerical
simulation. These results are shown in figure 5, which is
organized in four blocks, for each of the focusing strengths
from table 1. Panels (a)–(d) correspond to measurement 1,
panels (e)–(h) to measurement 2, and so forth. Within each
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Figure 5. For measurement one. (a) Experimentally measured AS, with level of counts shown in gray-scale bar. (b) Corresponding
numerical simulation. (c) The dots show the result of adding up the rows of the matrix of values in panel (a), the line shows the AS
integrated over the ρsx0 coordinate. (d) The dots show the result of adding up the columns of the matrix of values in panel (a), the line shows
the numerically obtained AS integrated over the ρsy0 coordinate. Blocks of panels (e)–(h), (i)–(l) and (m)–(p) are similar to block (a)–(d) for
each of measurements two, three and four.

of these blocks, the first panel represents a measurement
of the AS shown in six gray levels, as indicated by the
gray-level bar on the left. Note that background counts have
been subtracted for each of the AS measurements. For these
measurements, data were taken on a transverse position grid,
involving a counting period of 1 s at each point. Each
grid point represents a particular transverse position ρ⊥s0 of
the fiber tip, which corresponds to a transverse momentum
value k⊥s0 = [ωs/(cf2)]ρ⊥s0. A grid spacing of 200 µm is
used for measurements one to three and of 250 µm is
used for measurement four in AS measurements, while a
larger spacing of 400 µm is used for measurements one
to three and of 500 µm for measurement four in areas
of low counts, e.g. inside the annuli. The second panel
represents the corresponding numerical simulation, where we
have scaled the maximum number of counts to coincide with
the experimentally obtained maximum number of counts. The
specific simulation carried out yields Rs(ρ

⊥

s0) by numerical
integration of equation (12); for convenience, we have also
labeled these plots with the transverse momentum values
at the degenerate SPDC frequency. Note that because the
transverse dimensions of the fiber used for photon collection
are negligible compared with the width of the AS annulus,

in computing our numerical simulations we have used
the expression corresponding to delta-like detectors on the
Fourier plane (equation (12) rather than equation (13)).

The third and fourth panels in each block show projected
AS obtained by adding together values along columns of
this grid, to obtain the horizontal projected AS, and likewise
obtained by adding together values along rows of this grid
in order to obtain the vertical projected AS. We employ these
projected AS for a careful comparison between measurements
and simulations; note that while we could also use for this
purpose a ‘slice’ obtained for fixed ρsx0 (or fixed ρsy0),
the projected AS lead to considerably more counts per grid
location, and therefore to better statistics. The continuous
lines represent the corresponding numerical simulations,
where the AS has been integrated over the ρsy0 coordinate
to obtain the horizontal projected AS, and over the ρsx0
coordinate to obtain the vertical projected AS. In general
terms it may be seen that increasing the degree of pump
focusing (or decreasing Wx and Wy) leads to an increasingly
asymmetrical AS, along the vertical direction, with a larger
width at the top of the annulus than at its bottom; note that,
in contrast, the widths at the left and right of the annulus
are comparable. As discussed above, this AS asymmetry
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Figure 6. For measurement one. (a) Experimentally measured CAS, with the level of counts shown in the gray-scale bar. (b) Corresponding
numerical simulation. (c) The dots show the result of adding up the rows of the matrix of values in panel (a), the line shows the CAS
integrated over the ρsx0 coordinate. (d) The dots show the result of adding up the columns of the matrix of values in panel (a), the line shows
the numerically obtained CAS integrated over the ρsy0 coordinate. Blocks of panels (e)–(h), (i)–(l), and (m)–(p) are similar to block (a)–(d)
for each of measurements two, three and four.

appears for parameter combinations in the regime L > Lc.
This asymmetry, which is related to Poynting vector walkoff,
is clear from the vertical projected AS which exhibits a wider
and shorter right-hand peak compared to the left-hand peak.
In contrast, the horizontal projected AS is symmetric, both
peaks exhibiting identical heights and widths. Related results
obtained with a CCD camera have been reported, for type-II
SPDC, in [49, 50] and using a LED pump in [64]. Note that
the agreement between the experimental measurements and
the numerical simulations is excellent.

Let us now turn our attention to coincidence counts,
i.e. to measurements of the CAS. As in the case of our
measurements of the AS, we have undertaken measurements
for the four experimental situations from table 1. Likewise,
for each of these four cases we have carried out a
corresponding numerical simulation. These results are shown
in figure 6, which is organized in four blocks, for each of
the focusing strengths from table 1. Panels (a)–(d) correspond
to measurement one, panels (e)–(h) to measurement two,
and so forth. Within each of these blocks, the first panel
represents a measurement of the CAS, shown in six gray
levels, as indicated by the gray-level bar on the left.
For these measurements, data were taken on a transverse

position grid, located around the transverse position conjugate
to the position of the idler-mode fiber. Each grid point
represents a particular transverse position ρ⊥s0 of the fiber tip,
which corresponds for SPDC frequency ωs to a transverse
momentum value k⊥s0 = [ωs/(cf2)]ρ⊥s0. We have used a
counting period of 10 s at each point for measurements one
to three, and of 60 s at each point for measurement four.
These counting periods reflect the fact that for a greater
degree of focusing, the counts become spread out over a
greater transverse area, so that the level of counts at each
grid point is reduced. A grid spacing of 50 µm is used
for measurements one to three and of 100 µm is used for
measurement four. The white frame which encompasses the
region with counts represents the range of transverse positions
where data were taken; for positions outside of this frame, the
coincidence counts were fixed to zero in the plots. We show
the transverse dimensions of the fiber core used for photon
collection through a white disk appearing near the bottom-left
corner of each panel. It may be appreciated that the transverse
extent of the collection fiber can be significant compared to
the width of the measured CAS. In contrast, note that in the
case of the AS (single-channel counts; figure 5), the transverse
dimensions of the fiber may be neglected, since they are much
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smaller than the width of the AS annulus. In fact, a white
disk which represents the fiber core transverse dimensions is
shown in figure 5, although it is difficult to see due to its small
size.

The second panel in each block represents the
corresponding numerical simulation, where we have scaled
the maximum number of counts to coincide with the
experimentally obtained maximum number of counts. Note
that for these simulations we have assumed that the spatial
filter functions us(k⊥s − k⊥s0) and ui(k⊥i − k⊥i0) are Gaussian
with a full width at 1/e of 200 µm. The specific simulation
carried out yields Rc(ρ

⊥
s , ρ

⊥

i0) by numerical integration of
a version of equation (10) written in terms of transverse
position; for convenience, we have also labeled these plots
with the transverse momentum values at the degenerate SPDC
frequency. Note that because in the case of the CAS the
transverse width of the fiber is significant, in computing our
numerical simulations, we have used equation (10), which
takes into account the transverse extent of detectors on
the Fourier plane, rather than equation (6) which assumes
delta-like detectors. Note also that in the case of coincidence
counts, there are no background counts; the plots show the
actual number of counts without subtracting a background
level. The maximum number of coincidence counts decreases
as the strength of focusing is increased so that the data are
of greater quality for lower focusing strengths. The third and
fourth panels in each block show projected CAS obtained by
adding together values along columns of this grid, to obtain
the horizontal projected AS, and likewise obtained by adding
together values along rows of this grid in order to obtain
the vertical projected AS. As in the case of single-channel
counts we employ these projected AS for a careful comparison
between measurements and simulations. The continuous lines
represent the corresponding numerical simulations, where the
AS has been integrated over the ρsy0 coordinate to obtain
the horizontal projected AS, and over the ρsx0 coordinate to
obtain the vertical projected AS. As can be appreciated, the
agreement is excellent.

It is clear from our experimental and numerical results
that an increased level of pump focusing broadens the CAS,
and that for a sufficiently long crystal (L > Lc), the CAS may
become tilted. Indeed, as expected from our theory, the CAS
in fact corresponds to a displaced pump AS, which for L > Lc

may become clipped by function L (k⊥s ,k⊥i ) and can then
become tilted. Thus, a greater degree of pump focusing leads
to a broader pump AS, and this in turn leads to a broader CAS.

Note that for, both, the AS and CAS measurements, in
the case of measurement four, i.e. the most highly focused
case that we have considered, the agreement is not as optimal
as for measurements one to three. We have observed that
despite the use of spatial filtering through a single-mode fiber,
for an increasing degree of focusing the pump beam acquires
additional structure and becomes progressively less Gaussian.
Since our theory assumes a perfectly Gaussian pump beam,
this explains the observed slight discrepancy between theory
and experiment for measurement four.

4. Conclusions

We have presented a theoretical and experimental exploration
of the joint effects of the pump transverse electric field
distribution and of the nonlinear crystal on the properties
of photon pairs generated by spontaneous parametric
downconversion (SPDC). We have focused this analysis on
the angular spectrum (AS) and on the conditional angular
spectrum (CAS) of the SPDC photon pairs. We have shown
that the CAS may be written as the product of two functions,
one of which is related to transverse phase matching and
depends on pump properties, and another of which is related to
longitudinal phase matching and depends on nonlinear crystal
properties. We have shown that a critical crystal length Lc
exists, which depends on the degree of pump focusing, such
that for L < Lc the CAS is fully determined by the pump AS
and that for L > Lc the CAS is determined jointly by crystal
and pump properties. For a Gaussian beam pump, Lc turns out
to have an essentially linear relationship with the beam radius.
Thus, the condition L = Lc divides the {W,L} parameter space
into two separate parameter subspaces, where L < Lc leads
to a symmetric AS and to an azimuthally invariant CAS, and
where L > Lc leads to an asymmetric AS and to a CAS which
varies in width and orientation around the SPDC annulus.

We have also presented experimental measurements of
the AS and CAS for photon pairs generated through type-I
non-collinear spontaneous parametric downconversion. These
measurements were carried out by spatially resolved photon
counting, and by coincidence spatially resolved photon
counting, respectively. We have presented experimental
data for the AS and CAS, along with corresponding
numerical simulations based on our theory, for four different
experimental configurations amongst which the degree of
pump focusing is varied. A comparison of our experimental
measurements with our numerical simulations leads to
excellent agreement. Of the four experimental configurations
used, two are in the regime L < Lc, one is near L = Lc,
and one is in the regime L > Lc. Our measurements show
that, as expected from our theory, pump focusing leads to
an asymmetric broadening of the AS, and to a broadening
and tilting of the CAS. Physically, the broadened AS is
a consequence of the greater spread of pump transverse
wavevectors, resulting in phase matching for a greater spread
of signal and idler transverse wavevectors. This results in
broadening of the CAS, so that each idler-mode k-vector
is correlated to a spread of signal-mode k-vectors, while
this correlation is one-to-one in the idealized case of a
plane-wave pump. We believe that these results will lead
to an enhanced quantitative and qualitative understanding of
the spatial properties of type-I, non-collinear spontaneous
parametric downconversion photon pairs and to an important
tool for source design.
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2010 Phys. Rep. 495 87

[19] Walborn S P, de Oliveira A N, Pádua S and Monken C H 2003
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