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Abstract
Randomness is fundamental in quantum theory, with many philosophical and practical
implications. In this paper we discuss the concept of algorithmic randomness, which provides a
quantitative method to assess the Borel normality of a given sequence of numbers, a necessary
condition for it to be considered random. We use Borel normality as a tool to investigate the
randomness of ten sequences of bits generated from the differences between detection times of
photon pairs generated by spontaneous parametric downconversion. These sequences are shown
to fulfil the randomness criteria without difficulties. As deviations from Borel normality for
photon-generated random number sequences have been reported in previous work, a strategy to
understand these diverging findings is outlined.

Keywords: quantum randomness, single photons, Borel normality

1. Introduction

For many decades after quantum mechanics was formally
established, it was relatively easy to live with the fact that it
only allows the prediction of probabilities of certain results of
experiments. The description and manipulation of condensed
matter, molecules, atoms, atomic nuclei, and subnuclear
particles was indeed very successful, and the statistical nature
of the results, describing a huge number of similar processes,
as in scattering and decay, fitted quite well with this prob-
abilistic interpretation.

In the last few decades, the ability to manipulate indivi-
dual quantum objects (e.g., molecules, atoms, and photons)
and even to place many of them in a single quantum state, as
in a Bose–Einstein condensate, has emerged. The experiments
along these lines that are possible nowadays invite one to
ponder the quantum mechanical description of individual
systems, and to engineer them to obtain technologically
useful devices.

The emerging view is, for us, both surprising and chal-
lenging. Nearly ten years ago, Anton Zeilinger wrote: ‘The
discovery that individual events are irreducibly random is
probably one of the most significant findings of the twentieth
century. ... for the individual event in quantum physics, not

only do we not know the cause, there is no cause. The instant
when a radioactive atom decays, or the path taken by a photon
behind a half-silvered beamsplitter are objectively ran-
dom’ [1].

This provocative statement helps to visualize the rele-
vance that randomness has in our description of the physical
world. According to this view, reality and information are two
sides of the same coin. Randomness, complementarity, and
entanglement emerge from the fact that from individual
measurements there is a finite amount of information avail-
able. It is postulated that an elementary system can only give
a definite result in one specific measurement. Other inde-
pendent measurements must then be irreducibly random [2].

The consequences of these assumptions are both philo-
sophical and practical. Random numbers are widely
employed for classical computation in science and industry.
Monte Carlo and other numerical methods require the use of
random numbers, which are demanded to be both efficiently
generated and having proved randomness [3].

When the intrinsic quality of quantum randomness is
accepted as a postulate, a world of applications emerges.
Quantum key distribution is a cryptographic process whose
security is guaranteed by the quantum randomness [4]. A
cryptographically secure random number generator that does
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not require any assumption about the internal working of the
device has been proposed [5, 6]. Such a strong form of ran-
domness generation is impossible classically and possible in
quantum systems only if certified by a Bell inequality viola-
tion. ‘Private randomness’ is defined by the presence of
correlations that cannot be reproduced with local variables. It
is quantified by the violation of Bell inequalities, and is
associated with the impossibility to predict a given string
employing a classical computer and classical information [5–
9]. Quantum contextuality has also been invoked to certify
randomness in a random number generator [10].

Is the randomness of quantum phenomena a physical
assumption that is testable? Many attempts have been made to
answer this question. Recently a comprehensive suite of tests,
developed at the National Institute of Standards and Tech-
nology (NIST) to assess the quality of computer-based ran-
dom number generators [11], was employed to study the
randomness of single-photon polarization measurement out-
comes, using pairs of photons generated by spontaneous
parametric downconversion (SPDC). No statistically sig-
nificant deviations from randomness were observed [12].

Has quantum randomness been experimentally proved?
The previously mentioned results suggest that a quantum-
generated random sequence looks as random as a computer-
generated one. But there are deep differences between these
sources of random numbers. Quantum randomness can be
proven incomputable; that is, it is not exactly reproducible by
any algorithm, while software-generated random numbers,
known as pseudo-random, can be reproduced if the computer
code and the seed are known. Is it possible to distinguish
between them? Calude et al [13] performed finite tests of
randomness inspired by algorithmic information theory,
analyzing algorithmic randomness, the strongest possible
form of incomputability. They performed tests of randomness
on pseudo-random strings (finite sequences) generated with
software (Mathematica, Maple), which are cyclic (so, strongly
computable), the bits of π, which are computable, but not
cyclic, and strings produced by quantum measurements (with
the commercial device Quantis and by the Vienna IQOQI
group). They report that all tests produced evidence, with
different degrees of statistical significance, of differences
between quantum and nonquantum sources.

Figure 1 displays the maximal relative deviations from
Borel normality reported in [13]. It shocked us to observe that
the noncomputable, photon-generated random sequences
depart from Borel normality far more than the pseudo random
numbers obtained from Mathematica, Maple and the digits of
π. In particular, the sequences produced by the Vienna group,
obtained from an attenuated laser impinging on a beams-
plitter, cannot be validated as random under this criterion.

Puzzled by these results, we have generated random
numbers employing the detection times of photon pairs gen-
erated by SPDC and analyzed them with the tools of algo-
rithmic randomness. We have found that, at variance with the
findings of [13], they pass all the randomness tests with flying
colors. These results call for a more detailed analysis, com-
paring different sources of single photons and different ways

to generate random bits from their detection times; this con-
stitutes work in progress in our group.

In what follows we present a short review of the chal-
lenges faced in defining randomness, the algorithmic infor-
mation approach, and the Borel normality test, which
combined with the algorithmic complexity approach, provides
a necessary but insufficient test of randomness. We describe
in some detail the experimental setup, the procedure to gen-
erate the bit sequence from the photon arrival times, and the
analysis. We close with some conclusions and open
questions.

2. Randomness

Randomness in physics is related with two main ideas: first
with the lack of information about a system; for instance,
every time a coin is tossed we ignore the initial conditions of
the event so that we cannot predict the result, and second,
with the intrinsically unpredictable behavior of a quantum
system, as in a photon impinging on a beamsplitter. In both
cases we use a probabilistic approach to describe phenomena
regardless of their conceptual differences, and sometimes we
combine both in the density matrix, but there are situations
where we want to talk about randomness itself, i.e., char-
acterize and/or quantify randomness. We therefore need a
definition of randomness and a theoretical framework that
allows us to develop and use these ideas.

There have been some works trying to define randomness
through different mathematical objects. For example, the
concept of normal numbers due to Borel [14] formalizes the
notion of a random real number. One successful attempt that
has become a mathematical theory is algorithmic information
theory, also known as Kolmogorov complexity. It is based on
the idea of patterns in a mathematical object.

Figure 1.Maximal relative deviations from Borel normality reported
in [13]. The red dashed line represents the maximum possible
deviation allowed by Borel normality. The blue circles represent the
(absolute value of the) deviations from 1 2m, for different orders m
(see section 3). Some sequences produced by the Vienna group are
not Borel normal.
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In order to provide some physical insight leading to the
definition of randomness in algorithmic information theory,
consider a system having a property with the two possible
outcomes, 0 and 1, with equal probabilities of measuring each
of them.

If we measure it repeatedly, the result may look like one
of these cases:

0101010101010101010101010101010101
0100011011000001010011100101110111
0100010110100101111010101001001011

⋯
⋯
⋯

These sets are noticeably different. The first one does not
look random at all, because it has a strong pattern: after a 0
the next result will be a 1. We can sum up this set of data with
the recipe ‘repeat “01” indefinitely’. The second case looks
random but actually has a pattern. It was generated by writing
0 and 1, then the combinations 00 01 10 11, then the com-
binations with three symbols 000 001 … etc, and is known as
the Champernowne’s constant. It serves as a cautionary
example of the difficulty in identifying a random sequence,
which can look random despite being defined by a very
simple pattern. How can we determine if the third one has a
pattern?

It is possible to formalize the intuitive relationship
between randomness and the lack of patterns in a sequence in
a definition like this:

‘A sequence without patterns is random.’

Although this looks like a very simple definition, we
need to define what a pattern is. In the previous examples we
described a pattern in such a way that anyone can reproduce
the sequence just by following the steps, so everyone could
use this description, in principle, in the same way that a
computer executes a program.

Suppose that we have a program that generates a given
sequence. Does that mean that the sequence has a pattern? As
a useful illustration, the program

PRINT‘0100010110100101111010101001001011′

evidently can reproduce the third sequence, and in general the
same technique can be used for every sequence simply by
placing the actual sequence as part of the code. However, this
implies that the program is longer than the sequence itself and
it does not make much sense considering it as a pattern, so we
define a pattern as a program whose output is a given
sequence in such a way that this program is shorter than the
sequence.

The previous considerations lead us to a simple
definition:

There are no patterns in a random sequence,
i.e., every program that outputs a random
sequence is longer than the sequence itself.

This definition isn’t fully formalized. The notion of a
program needs to be written in terms of universal Turing
machines, and we need to specify the symbols allowed in the
code. A full treatment of the concept of algorithmic ran-
domness is beyond the scope of this informal exposition. The

reader interested in a complete description is invited to read
[15] and [16].

Unfortunately this definition holds some surprises for
us. Suppose that we wish to determine whether or not a
sequence is random; this is indeed a very natural question to
ask. In principle, we would need to run all programs with a
shorter length than the length of the sequence. If any of these
programs were to give us the desired sequence as the output,
an underlying pattern would then have been determined to
exist, and we would conclude that the sequence is not ran-
dom. But we don’t know in advance if a given program will
halt or not. There is a close relationship between algorithmic
randomness, the halting problem, and Gödel’s incomplete-
ness [17].

The halting problem [18] in a computer can be sum-
marized as follows: suppose that we have an algorithm
designed to determine whether a given program will halt; then
we could build a new algorithm that halts if the program does
not halt and does not halt if the program does. What will
happen if we feed this new program with its own code? It will
halt if and only if it doesn’t halt, which is an evident paradox.
Therefore there is no algorithm capable of deciding whether a
sequence is random or not.

3. Borel normality

We may be disappointed because algorithmic randomness is
difficult to apply in a real case, but there are other ways to
approach this definition of randomness.

In the previous sequences the ‘probability’ of getting 0 or
1 is equal; this is the case for the sequence 010101⋯. What
about the probability of getting 01, following a subdivision of
the string into symbols composed of two digits? In this case,
this probability is one and the probabilities of getting 00,10
and 11 are in all three cases zero. In contrast, we expect a
random sequence to lead to equal probabilities for all these
cases:

P P

P P P P

(0) (1)
1

2

(00) (01) (10) (11)
1

4

= =

= = = =

⋮

We can generalize this restriction on the probabilities as:

P m( bits sequence )
1

2
. (1)

m
=

A set of numbers satisfying this property is called the
Borel normal. It is closely related with the normality concept
in real numbers developed by Borel [14]. Naturally, there
must be a restriction on m because in a string of 4 symbols we
cannot try sequences longer than 4 symbols.

We can analyze finite sequences that may not fulfil
exactly the conditions noted earlier but are close to doing so,
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for example:

P (00) 0.251=

This can be expressed mathematically as [15]

P (00)
1

22
ϵ− <

where ϵ is a ‘small’ number.
Although there is no algorithm that can determine the

randomness of sequences, it is possible to relate algorithmic
randomness with the parameters m and ϵ. In [19] it is shown
that almost all algorithmic random strings are Borel normal,
satisfying

P m
log n

n
( bits sequence )

1

2
(2)

m
− <

where n is the length of the complete sequence and

m log log n. (3)⩽

We will refer to this condition as Borel normality. This is
not a sufficient condition for randomness but allows us to
discard some sequences as clearly not random. Its advantage
is that checking this condition is an algorithmic procedure that
can be applied to any sequence.

In [13] this condition is applied to binary sequences
obtained from a quantum experiment, based on an attenuated
laser beam impinging on a beamsplitter. The authors found
that these sequences ‘were outside the expected range for
m = 3 and m = 4’. In this work we analyze a related
experimental setup, where we employ the differences in
arrival times of SPDC photon pairs as a means to generate
random bits.

4. Experimental setup

Our experimental work is based on the process SPDC in
which a laser pump beam illuminates a crystal with a (2)χ
nonlinearity, leading to the annihilation of pump photons and
the emission of photon pairs, typically referred to as signal
and idler [20]. In the case of a continuous-wave pump at
frequency pω , signal and idler photons are spectrally anti-
correlated so that if a signal photon is detected with frequency
ω, the conjugate idler must have a frequency pω ω− . Like-
wise, in the idealized situation of a plane-wave pump (which
we may approximate through a Gaussian beam with a large
beam radius at the beamwaist), photon pairs are anti-corre-
lated in a transverse wavevector, i.e., if a signal photon is
detected with transverse wavevector k⊥, the conjugate idler
photon must have transverse wavevector −k⊥.

The quantum state of the emitted photon pairs can be
written as vac 2Ψ η Ψ∣ 〉 = ∣ 〉 + ∣ 〉 in terms of the vacuum vac∣ 〉,
the two-photon component 2Ψ∣ 〉, and of a constant η related to
the conversion efficiency. Under the assumptions a con-
tinuous-wave, plane-wave pump 2Ψ∣ 〉 may be expressed as

[21]

( )d d Fk k k

k

, ,

, , (4)

s

p
i

2 ∫ ∫Ψ ω ω ω

ω ω

=

× − −

⊥ ⊥ ⊥

⊥

written in terms of a joint amplitude function F k( , )ω ⊥ , and
where k,ω∣ 〉μ

⊥ represents a single-photon Fock state with

frequency ω and transverse wavevector k⊥ for mode μ, with
s i,μ = for the signal (s) and idler (i). In writing the two-

photon state, we have assumed that the parametric down-
conversion process is in the spontaneous regime, so that the
appearance of multiple-pair events can be neglected. This
assumption is valid if the parametric gain is sufficiently low;
experimentally, we restrict the pump power so that the
process remains spontaneous. In all likelihood, a similar
experiment and analysis carried out in the high-gain,
stimulated regime would yield different results from those
presented in this paper.

Note that the state in equation (4) is entangled since it
cannot be factored into a direct product of separate states S∣ 〉
(for the signal photon) and I∣ 〉 (for the idler photon) as

S IΨ∣ 〉 = ∣ 〉∣ 〉. While many experimental works have focused
on the presence of quantum entanglement in photon pairs, in
this paper we exploit another important aspect of SPDC
photon pairs: they are emitted at random times.

Our experimental setup is shown in figure 2. We have
used as a pump a beam from a diode laser (DL407) centered
at 407 nm with ∼ 60 mW power, and as a nonlinear medium a
β barium borate (BBO) crystal of 1 mm length. A Schott BG-
39 coloured glass filter (F0) is used to remove non ultraviolet
photons from the pump beam. The BBO crystal, which is
negative uniaxial, was cut so that the angle subtended by the
optic axis with respect to pump beam axis is 29.2pmθ = °
which yields phasematching for the generation of frequency-
degenerate, noncollinear photon pairs. Signal and idler pho-
tons are emitted on diametrically opposed portions of an
emission cone centred on the pump beam axis, in our case,
with a 3.6° half-opening angle. Pump photons are suppressed
by transmitting the signal and idler modes through a long-
pass filter, which transmits wavelengths 488λ > nm (F1),

Figure 2. Experimental setup used for obtaining random sequences
from a SPDC photon-pair source
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followed by a bandpass filter, centred at 800 nm with a 40 nm
bandwidth (F2).

Note that in order to set up and correctly align the fiber
collection modes, the signal and idler paths are initially
simulated using a separate diode laser centred at 810 nm
(DL810). The beam from this laser is split into two branches,
and each one is reflected with a mirror so as to meet on the
crystal’s centre plane in such a way that the paths of these two
branches emerge from the crystal in the directions expected
for the emitted signal and idler photons. Alignment of the
collection lenses and fibers is significantly easier with these
classical beams than with SPDC light.

Collection of the signal and idler photons can be carried
out on any two diametrically opposed locations on the
emission ring. Each of the signal and idler collection modes is
defined by an aspheric lens with f = 8 mm focal length (L1
and L2), which focuses incoming light into the core of a
multimode fiber (MMF) with a 50 mμ diameter (MMF1 and
MMF2). The plane defined by the two collection fibers is
chosen for convenience to be parallel to the optical table.

Each of the two photon-collection fibers leads to a sili-
con-based avalanche photodiode (APD1 and APD2), which
emits an electronic pulse for each detection event, dis-
criminated on its rising edge, resulting in a 4-ns-long standard
nuclear instrumentation module (NIM) pulse. Because we are
interested in the time series that results from the detection
times, we connect the two detector outputs to a 2.5 GHz
digital oscilloscope (OSC). We program the oscilloscope to
subdivide a detection span of 0.512 s into 256 106× time
bins, so that each bin has a duration of 2 ns. The voltage from
the APD output is recorded at each time bin for each of the
signal and idler channels, thus obtaining two separate time
series composed of voltage values. These times series are
post-processed so that those bins with a voltage V that
satisfies V Vth∣ ∣ > with a threshold value of V 450th = mV are
assigned a value of 1, while those bins for which V Vth∣ ∣ < are
assigned a value of 0. This leads to two separate (for the
signal and idler) strings sn and in of 256 × 106 digits, each
with value 0 or 1. Likewise, for each pair of signal and idler
time series, we generate a third time series defined as
c s in n n= × , which corresponds to those bins for which there
are coincident detection events in the two channels. We have
observed by averaging over several hundred experimental
runs that the average number of single-channel detection
events during the detection span of 0.512 s is around
8.5 105× , while the average number of coincidence detection
events is around 8 104× .

5. Obtaining bits from data

Obtaining random bits from data has a considerable com-
plexity. The binary strings in the previous section have a bias
because most of the time bins will have value of ‘0’ corre-
sponding to no detected photon. In other words, there are
many more zeroes than ones.

In order to obtain a sequence that looks more random, we
first compute the time difference between subsequent detec-
tion events. This is equivalent to counting the number of
zeroes between ones, to which we can clearly assign an
integer number. These time intervals are described by an
exponential distribution that can be understood in mathema-
tical terms like this: let λ be the probability per unit time of
observing a detection at any instant of time; then the prob-
ability of not observing a detection in a short time interval tδ
is t1 λδ− ; if we consider a finite time interval t and divide it
into n intervals with duration t

n
where n is large, the prob-

ability of not having a detection in t is equal to the product of
the probabilities for each short time interval, then:

t

n

t

n

t

n
1 1 1 .

n
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

λ λ λ− − … = −

Note that the right side of the previous expression becomes
e tλ− as n tends to infinity. It is relevant to remark that the
result relies on the absence of correlations between detections
at different times.

Figure 3 shows an example of an experimentally mea-
sured time interval distribution for our SPDC photon pairs
detected in coincidence, along with a fit to an exponential
distribution. Note that our APDs have a dead time of around
Td = 20 ns, so that following a detection event in any of the
two channels, the detector is unable to register further events
during a time interval of Td duration. Of course, this will
impact the time interval distribution for short times. We have
based our analysis later on a truncated time interval dis-
tribution, so as to exclude the previous features, which appear
at short times smaller than t T2 d0 = . As the time intervals
follow an exponential distribution, removing the short time
intervals is equivalent to redefining them as t t t0→ − . Note
that while the interval distribution reaches times greater than
15 sμ , with a mean time of around 4 sμ , the omission of the
first 40 ns of this temporal range is expected to have only a
minor effect on our procedure for obtaining random
sequences.

Figure 3. Distribution of time differences between subsequent
detection events. Each event in the green zone yields a 0 value, while
those in the purple zone yield a 1 value.

5

Phys. Scr. 90 (2015) 074034 A Solis et al



Thus, using our knowledge about the distribution, ran-
dom bits can be obtained by dividing the possible time values
into two bins: those lower than x and those greater than x,
where x is the mean time such that

e dt e dt
1

2
.

x
t

x

t

0
∫ ∫λ λ= =λ λ−

∞
−

Each individual time difference t obtained from the
experiment allows us to generate a random bit 0 if the t x<
(green zone in figure 3) and 1 if t x> (purple zone). The
fraction of 0ʼs and 1ʼs in each string departs from the exact
1 2 value due to the fluctuations around the average expo-
nential distribution. These deviations from 1 2 are quantified
by the standard deviation shown in the m = 1 row of table 1.
Using this method, we generated 10 sequences of 106 bits
using the string of coincident detection events cn obtained
from the quantum source described in the experimental setup.
Note that this method could be improved upon by dividing
the possible time values into more bins, i.e., 4, 8, 16, so we
can obtain more bits per detection; see, for example, [22–24].

6. Results

We have experimentally generated ten sequences, which have
an equal count of 0ʼs and 1ʼs with a maximum discrepancy of
0.1% after a careful adjustment of the mean difference time x.
From condition (3) we have

m log log 10 4.3. (5)6< =

Therefore, the maximum possible value of m in our case is 4.
For a given m, there are 2m different strings of length

forming the set Sm. Thus, S {00, 01, 10, 11}2 = ,
S {000, 001, 010, 100, 011, 101, 110, 111},3 = and so on.
We evaluate the probability of occurrence of a given string
i Sm∈ as P i N i N( ) ( ) m= , where N(i) is the number of times
that the string i is present in a sequence subdivided into
segments of m symbols, and N Int n m[ ]m = is the total
number of strings of length m in the sequence of length n. For
instance, in the sequence 01010101 we find that N (01) 4=
and N N N(00) (10) (11) 0= = = . Note that we define the
strings i sequentially in such a way that no two strings
overlap; for the specific example noted earlier, this means that
the string ‘10’ does not appear.

Table 1. Standard deviation of P(i) values from 1 2m (see
equation 6), for different values of m, computed for four different
sequences.

Standard deviation mσ

m Sequ. 1 Sequ. 2 Sequ. 3 Sequ. 4

1 0.000980 0.000405 0.000542 0.000760
2 0.001314 0.000750 0.000494 0.000564
3 0.000633 0.000312 0.000535 0.000492
4 0.000619 0.000421 0.000460 0.000451

Figure 4. Borel normality analysis for m = 2 using sequence 2. The
top and bottom red lines are the maximum deviations allowed by
Borel normality.

Figure 5. Borel normality analysis for m = 3 using sequence 2. The
top and bottom red lines are the maximum deviations allowed by
Borel normality.

Figure 6. Borel normality analysis for m = 4 using sequence 2. The
top and bottom red lines are the maximum deviations allowed by
Borel normality.
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In figures 4, 5 and 6 we present the results of the analysis
for one sequence. Each histogram shows P(i). It is represented
in a different range because the mean value is 0.25 in 4, 0.125
in 5, and 0.0625 in 6. The top and bottom dashed red lines
represent the maximum and minimum possible values
allowed by equation (2), respectively, and the central red line
corresponds to the mean value expected. It can be seen that all
cases easily satisfy the Borel normality condition

P i
log

( )
1

2

10

10
0.00441.

m

6

6
− < =

Because we are mainly interested in the deviations from
the mean value for every string, it makes sense to look at the
standard deviation (σ) of the probabilities. The standard
deviation is defined as

P i
1

2
( )

1

2
(6)m m

i S
m

2
2

m

⎜ ⎟⎛
⎝

⎞
⎠∑σ = −

∈

It follows from equation (2) that for the sequence to be
considered Borel normal, all mσ values must satisfy the con-
dition

log n

n
0.00441. (7)mσ < =

In table 1 we display the values of the standard deviations
of four sequences. All of them fulfill the previous condition
for m 1, 2, 3, 4= , being about an order of magnitude smaller
than the limit imposed by algorithmic randomness on Borel
normality.

In figure 7 we present for each of the ten sequences their
deviations from the expected mean value. The box-and-
whisker plots, inspired by the ones used in [13], display in
short horizontal lines, from bottom to top, the minimum
value, first quantile, median, third quantile, and maximum
value of the difference P i( ) 1

2m∣ − ∣, including the results for
m = 2, 3, and 4. The whisker-and-box plot allows us to see the
large difference between the maximum deviations from Borel
normality and the value imposed by condition (2). The

maximum deviations from the mean value reach up to 34% of
the limit set by condition (2) for m = 1, 47% for m = 2, 40%
for m = 3, and 27% for m = 4.

Returning to the motivation for the present investigation,
we were puzzled by the results reported in [13], where the
sequences of pseudo-random numbers passed without diffi-
culty the Borel normality test, while the sequences of random
numbers built employing the photon detections produced by
the Vienna group failed, having maximum deviations from
the mean value reach up to 27% of the limit set by condition
(2) for m = 1, 127% for m = 2, 103% for m = 3, and 105%
for m = 4.

We have based our analysis on the coincident-event
sequences cn. Note that since SPDC photons are born in pairs,
ideally the single-channel sequences sn and in would be
identical to cn. Realistic experiments are affected by optical
losses and by spurious detection events from noise sources
and from dark counts. We did in fact perform the Borel
normality analysis on the single-channel sequences, with the
result that sequences sn and in do satisfy the bounds for Borel
normality imposed by equation (2), albeit with larger devia-
tions from the expected fractions (81% for m = 2, 54% for
m = 3, and 37% for m = 4) as compared to the sequence cn.

In [13] the random bits were obtained with a different
experimental setup. The signals of the Vienna group were
generated with photons from a weak blue light-emitting diode
(LED) light source, which impinged on a non polarising
beamsplitter with two output ports associated with the values
‘0’ and ‘1’, respectively. There was no pre- or post-processing
of the raw data stream; however, the output was constantly
monitored. The signals of the QUANTIS device are produced
in a similar way, but due to hardware imbalances, which are
difficult to overcome at this level, QUANTIS processes these
raw data by unbiasing the sequence by a von Neumann-type
normalization. The sequences employed had 2 4 1032 9≈ ×
bits.

Finally, we have used the NIST statistical test suite [11]
to check the (intuitive or statistical) randomness of our gen-
erated bits. Even though these tests are not directly related to
algorithmic randomness, it is worthwhile comparing these

Figure 7.Deviations from the mean value for each sequence. The red
line represents the maximum deviation allowed by Borel normality.

Table 2. NIST test suite results for our photon-generated random
sequences.

Test P-value Pass

Frequency 0.191687 100/100
Block Frequency 0.021999 100/100
Cumulative Sums 0.171867 100/100
Cumulative Sums 0.319084 100/100
Runs 0.383827 98/100
Longest Run 0.224821 100/100
Rank 0.019188 99/100
FFT 0.867692 100/100
Nonoverlapping Template 0.507021 99/100
Overlapping Template 0.304126 99/100
Approximate Entropy 0.319084 99/100
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results with those of the Borel normality test. So as to have at
least 100 sequences on which to run the NIST tests, we
divided each string into ten sub strings of equal length, ending
up with 100 strings of 105 bits each. Each test returns a P-
value that must be greater than 0.01 (in our case) to pass the
test; this value was calculated using the 100 sequences of
random bits, and at least 97 of the sequences need to pass the
test individually. As expected, our sequences pass each of the
tests in the suite; the results are presented in table 2.

7. Conclusions

Random number generators are usually assessed using a
battery of tests (such as the one from NIST [11]), which are
quite practical but not based on a formal definition of ran-
domness. The Borel normality test employed here is based on
algorithmic information theory, which provides a mathema-
tical framework that can formalize randomness.

In [13] it was reported that quantum random number
sequences built from photon detection events failed in some
cases to pass the Borel normality test, while the pseudo-ran-
dom sequences generated with computer codes had no pro-
blems fulfilling the Borel normality requirements demanded
by algorithmic randomness.

In this contribution we report an analysis of Borel nor-
mality of sequences of random numbers generated from the
time intervals between successive detection events in a pho-
ton-pair source based on SPDC. They pass comfortably the
Borel normality test.

Before definite conclusions can be extracted from this
comparison, we plan to carry out further experiments with
longer photon-derived random sequences. We also plan to
carry out experiments with an attenuated laser instead of
SPDC light, and with a beamsplitter introduced both in one
arm of an SPDC source and on the path of an attenuated laser.
We hope that these steps will help to clarify if, and under
what circumstances, it is experimentally posible to distinguish
random number sequences created using quantum sources
from computer-generated pseudo-random numbers.
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