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Abstract
In this work we study, for the spontaneous parametric downconversion process, how the
transverse amplitude of the pump may be transferred to one of the emitted photons in a given
pair when heralded by the detection of the remaining photon. We present a theoretical
description of this process along with a discussion of the short-crystal regime within which
faithful transfer of the transverse amplitude occurs. We show experimental results for Gaussian
and Bessel–Gauss pump beams. In both cases, we verify that the transverse amplitude
mechanism occurs and for the former also shows the effects of a departure from the short crystal
regime. For the latter we show that our heralded single photons exhibit a non-diffractive
behavior, and for orders l = 1 and l = 2 we show that these heralded single photons are in fact
vortices with orbital angular momentum transferred from the pump.

Keywords: spontaneous parametric downconversion, quantum information, single photons

(Some figures may appear in colour only in the online journal)

1. Introduction

This paper is about the generation of single photons with a
well-defined transverse shape, in such a way that this shape
may be selected by the experimenter with relative ease [1–7].
Our approach is based on four basic ingredients. The first
ingredient is the well known process of spontaneous para-
metric downconversion (henceforth referred to as SPDC) in
which single photons from a laser beam, referred to as the
pump, are annihilated in a non-linear crystal so as to generate
photon pairs, typically referred to as signal and idler [8, 9].
The second ingredient is the use of a structured beam as
pump in the SPDC process, with its transverse structure
derived from amplitude and/or phase spatial light modulation.
The third ingredient is the use of an optical Fourier trans-
form, implemented through a lens, so as to resolve the two-

photon state in transverse momentum space. The fourth
ingredient is the use of heralding through which the detection
of an idler photon with a well-defined transverse momentum,
heralds the presence of a single photon in the signal mode.
When used together, these four ingredients can yield a
beautiful result: the shape—including amplitude and phase—
of the pump beam, which itself may be arbitrary, may be
transferred to the heralded single photons.

Why would we wish to generate single photons with a
configurable transverse shape? The ability to prepare single
photons with a well-defined transverse shape in fact con-
stitutes an important enabling technology on a number of
fronts. As a first example, while quantum key distribution
(QKD) schemes are typically based on two-dimensional
quantum systems (e.g. which employ vertical/horizontal or
diagonal/anti-diagonal polarization), much can be
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accomplished by extending the alphabet to more than two
elements. Large-alphabet QKD schemes based on a collection
of transverse modes (where the number of such modes is in
principle arbitrary and thus this scheme is scalable to higher
dimensions) is thus an exciting field of research [10]. As a
second example, the shape of a single photon may be used to
encode information, which may be stored in an atomic system
when the photon is absorbed, and later retrieved, thus leading
to a quantum memory [11].

Note that a single photon may be conferred a specific
transverse shape in the same manner as one would proceed
for a (classical) laser beam. Specifically, one would first
generate photon pairs and thereafter shape one or both pho-
tons through appropriate direct spatial amplitude and/or phase
modulation. In contrast, in our approach we rely on the inner
workings of the SPDC process to carry out indirect transverse
shaping of our single photons. We manipulate a Gaussian
beam to be used as pump (again through amplitude and/or
phase spatial modulation) to obtain the desired shape, which
is then transferred to a single signal photon when heralded by
the detection of an idler photon. The key advantage to this
approach is that direct shaping is carried out on a high-quality
Gaussian beam, rather than on the SPDC light, for which its
complex spatial-spectral structure yields such direct single-
photon shaping less straightforward and likewise less
predictable.

The transverse amplitude transfer mechanism exploited
here, does not occur for all SPDC configurations. Crystal
effects, including dispersion and Poynting vector walk off,
can in fact distort the transferred transverse amplitude
[12, 13]. Faithful transverse amplitude transfer thus necessi-
tates one of the following two regimes (or an appropriate
combination of both): (i) a sufficiently short SPDC crystal so
as to directly avoid crystal effects [1, 2, 14–20], and/or (ii) a
pump beam which is sufficiently close to an idealized plane
wave (or, technically, which is sufficiently compact in
transverse wavevector space) so as to reduce the sensibility to
these crystal effects. In this paper we analyze in some detail,
both experimentally and theoretically, the so-called short
crystal regime where faithful transverse amplitude transfer
can occur, as well as the effects of a departure from this
regime.

Within the realm of single-photon transverse spatial
structure, the presence, manipulation and exploitation of
orbital angular momentum (or OAM) has generated a great
deal of excitement [21–27]. In the context of the SPDC
process, OAM has been used as a new degree of freedom in
which to demonstrate the existence of quantum entanglement
[28]. In this case, entanglement resides in the OAM/optical
angle pair of conjugate variables, which can behave similarly
to transverse momentum/position and frequency/time pairs of
variables, in which Einstein Podolsky Rosen correlations may
occur [29]. A particularly promising aspect of OAM photon-
pair entanglement is that it opens up a clear road towards
higher-dimensional entanglement since OAM represents a
discrete but infinite-dimensional photonic degree of freedom
[30]. One of the key objectives in our experimental work is to

show that a complex transverse spatial structure in the pump
beam, in particular an optical vortex beam with OAM which
includes essential phase structure, may be successfully
transferred to our heralded single photons. For this purpose,
we have used Bessel–Gauss beams (BG) which for orders

⩾l 1 exhibit OAM.
Besides the presence of OAM, BG beams have some

interesting properties which may be exploited at the single-
photon level [31–33]. On the one hand, they are more resis-
tant, as compared to an equivalent Gaussian beam, to defor-
mation by transmission through a turbulent medium [34, 35]
or due to physical obstacles [36]. On the other hand, they are
non-diffractive over a certain propagation distance. In this
work we have experimentally demonstrated that heralded
single photons derived from a BG pump do in fact ‘inherit’
the non-diffractive behavior from the pump.

2. Theory

In this paper we set out to study the spatial (i.e. in transverse
position/momentum) structure of photon pairs generated by
the process of SPDC in a type-I, frequency-degenerate and
non-collinear configuration. Our objective is to determine
how the characteristics of the crystal and of the pump define
the SPDC bi-photon quantum state.

The current paper is related to three previous papers from
our group, [13, 37] and [38]. We utilize the SPDC process in
a type-I, non-collinear, and frequency-degenerate regime, in
which individual pump photons are annihilated so as to
generate signal and idler photon pairs. The bi-photon SPDC
quantum state can be written as Ψ η Ψ∣ 〉 = ∣ 〉 + ∣ 〉vac 2 , where
η is a constant related to the conversion efficiency. The two-
photon component of the state, for a monochromatic pump at
frequency ωp and assuming narrowband spectral filtering of
the signal and idler photons, is given by

∫ ∫Ψ = +

×

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

( )
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where ∣ 〉 ≡ ∣ 〉μ μ
⊥ ⊥ak k( ) 0† represents a single-photon Fock

state with frequency ω ω=μ 2p and transverse wavevector

μ
⊥k , with μ = s i, for the signal (s) and idler (i) photons,

respectively. ⊥S k( ) represents the pump transverse amplitude,
so that ∣ ∣⊥S k( ) 2 is the pump angular spectrum (AS), and

⊥ ⊥G k k( , )s i is the phase matching function given in terms of
crystal properties including length, dispersion and walk off,
according to
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with L the crystal length and where the phasemismatch of the
process Δ ⊥ ⊥k k k( , )s i is given by

Δ ρ= − − − +⊥ ⊥
⊥

⊥( )k k
k

k k kk k
k

,
2

tan . (3)s i p
p

sz iz y

2

0

In equation (3), μνk (with μ = s i, and ν = x y z, , )
represents the Cartesian components of the k vectors for the
signal and idler modes, kp is the pump wavenumber, and μ

⊥k is
a two-dimensional vector defined as μ μk k( , )x y . Also, we have

defined = +⊥ ⊥ ⊥k k ks i and ρ0 represents the Poynting vector
walkoff for the pump beam, which is assumed, without loss of
generality, to occur parallel to the z–y plane.

For the exploration of the spatial structure of the photon
pairs we have relied on standard Fourier optics techniques and
on spatially-resolved photon counting, both in the transverse
position or in the transverse wavevector domains, in single-
channel and coincidence counting configurations. The general
scheme used in our experiments is illustrated in figure 1.

2.1. The conditional AS

The first quantity of interest, to be referred to as the condi-
tional angular spectrum (CAS), corresponds to the signal-
mode, single-photon transverse wavevector distribution con-
ditioned on the detection of an idler photon with transverse

wavevector
⊥

k̃i . The CAS can be measured through standard
Fourier optics techniques, together with spatially-resolved
photon counting. A lens of focal length f1 is placed a distance
of f1 from the crystal (C plane), so that the different transverse
wavevectors can be directly probed on a Fourier plane (FP1)
located a distance of f1 from the lens; see figure 1. Mathe-
matically, this measurement is represented by the expectation

value 〈 〉⊥
n kˆ ( ˜ )s taken with respect to the heralded signal-mode,

single photon state Ψ∣ 〉⊥
k( ˜ )i s, that results from the action of

the projection operator

Π =⊥ ⊥ ⊥( )k k kˆ ˜ ˜ ˜ (4)i i
i

i
i

over the two-photon state Ψ∣ 〉2 , obtaining

∫Ψ = +⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥( ) ( ) ( )S Gk k k k k k k˜ d ˜ , ˜ . (5)i
s

s s i s i s s
2

Assuming detectors with ideal transverse wavevector
resolution, the CAS can then be obtained as

= = +

×

⊥ ⊥ ⊥ ⊥ ⊥
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( ) ( ) ( )
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2

where it is interesting to note that the CAS is written as the

product of two separate functions. While ∣ + ∣⊥ ⊥
S k k( ˜ ˜ )s i

2

depends only on the pump AS, ∣ ∣⊥ ⊥
G k k( ˜ , ˜ )s i

2 depends only on
crystal properties.

In a realistic experimental implementation, the transverse
dimensions of the detector used are non-vanishing. For an
idler angular acceptance described by the function

−⊥ ⊥
u k k( ˜ )i i i , centered at =⊥ ⊥

k k̃i i , and where the contribu-
tions from each idler wavevector are summed incoherently (as
is the case for our experimental conditions, see below) the
two photon state (equation (1)) becomes a statistical mixture
of pure states of the type given in equation (5), as follows

∫ρ Ψ Ψ= −⊥ ⊥ ⊥ ⊥ ⊥( ) ( ) ( )uk k k k kˆ d ˜ . (7)s i i i i i
s

i
s

2

In this situation, the CAS of the signal-mode heralded
single photon is given by

∫ρ = −⊥ ⊥ ⊥ ⊥ ⊥ ⊥( )( )( ) ( )n u Rk k k k k kTr ˆ ˆ d ˜ , . (8)s s s i i i i c s i
2 (0)

If the signal detector likewise has a non-vanishing

angular acceptance described by function −⊥ ⊥
u k k( ˜ )s s s , we

obtain

∫ ∫= −

× −
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2 2

(0)

2.2. The SPDC AS

The second quantity of interest in this study is the SPDC AS,
or the rate of single-channel counts resolved on FP1; this is
obtained experimentally with a detector which scans FP1

selecting single photons with transverse wavevector
⊥

k̃s .

Mathematically, this corresponds to 〈 〉⊥
n kˆ ( ˜ )s evaluated with

respect to the two photon state in equation (1). Under the
same conditions in which equation (6) was derived, it may be
shown that the relationship between the AS and the CAS is as
follows

∫=⊥ ⊥ ⊥ ⊥( ) ( )R Rk k k k˜ d ˜ , . (10)s i c s i
(0) 2 (0)

Note that when one evaluates equation (10) for (type-I,
non-collinear) SPDC one obtains a well-known ring structure
on the ⊥ks plane.

If the single-photon detector used has an acceptance

function −⊥ ⊥
u k k( ˜ )s s s (with a non-vanishing width), the AS is

Figure 1. Experimental scheme for probing the spatial structure of
SPDC photon pairs. C: crystal plane. FP1, FP2, and FP3: three
different Fourier planes used in our experiments. D1 and D2: fiber
tips leading to single-photon detectors.
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then written as

∫ ∫= −

×
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2.3. Transverse amplitude transfer and the short crystal regime

From an analysis of equation (6) it is possible to understand
several important properties of the spatial structure of SPDC
photon pairs. In the limit of a plane-wave pump, with trans-
verse wavevector =⊥k 0p , the pump AS is written as

δ∣ + ∣ = +⊥ ⊥ ⊥ ⊥S k k k k( ) ( )s i s i
2 so that if an idler photon

detection event is registered with =⊥ ⊥
k k̃i i , the signal photon

will be detected a = −⊥ ⊥
k k̃s i . The last sentence is in effect a

statement of transverse momentum conservation. However,
detection events are not expected at any two locations that
fulfil transverse momentum conservation; only at those that in

addition lead to a non-vanishing ∣ − ∣⊥ ⊥
G k k( ˜ , ˜ )i i

2 function.
Extending this situation, we can consider a pump which
departs from a delta function, i.e. which is described as a
superposition of plane waves. In this situation, a single-pho-

ton detection event with =⊥ ⊥
k k̃i i , will be correlated to a

detection event within a region around = −⊥ ⊥
k k̃s i with an

uncertainty determined by the CAS, which itself has a width
which depends on the pump AS width.

A typical experimental situation may be modelled by a
pump in the form of a Gaussian beam, with beam waist
parameters Wx and Wy along the x and y directions leading to
the following pump AS

+ = − +

+ +

⊥ ⊥ ⊥ ⊥

⊥ ⊥

{
}

( ) ( )

( )

S W k k

W k k

k k exp
1

2

, (12)

s i x sx ix

y sy iy

2 2 2

2 2 ⎟

⎛
⎝⎜

⎞
⎠

where μν
⊥k (with μ = s i, and ν = x y, ) are the x and y

components of the transverese wavevectors ⊥ks and ⊥ki .
Increasing the degree of focusing, or alternatively reducing
the values of Wx and Wy, leads to an increased width of the
AS and CAS functions, the latter as limited by the width of
the function ∣ ∣⊥ ⊥G k k( , )s i

2. Thus, while in the limit of a plane-
wave pump, a signal photon with transverse wavevector ⊥ks

corresponds to an idler photon with a well defined
wavevector– ⊥ks , this is no longer the case as the degree of
focusing is increased.

Another important property of the spatial structure of
photon pairs can be immediately derived from equation (6). If

the function ∣ ∣⊥ ⊥
G k k( ˜ , ˜ )s i

2 is broader than the function

∣ + ∣⊥ ⊥
S k k( ˜ ˜ )s i

2, the former can be considered constant in the
region of interest. The CAS is then identical to the pump AS

except displaced by—
⊥

k̃i in transverse wavevector space.
Applying the same argument at an amplitude rather than
intensity level, see equation (5), it becomes apparent that this

mechanism is in fact phase-preserving so that it is the full
transverse amplitude of the pump which may be transferred to
the signal-mode, single-photon transverse amplitude. Note
that while it is possible to shape single photons through
appropriate post-production projection. i.e. using amplitude
and/or phase filters, in our approach signal-mode single
photons are generated already with the desired shape inherited
from the pump, which can be revealed through the heralding
process.

In what follows, we investigate in greater detail the
conditions under which the transverse amplitude is transferred
faithfully from the pump to the heralded single photons.
Following the detailed analysis presented in [13], the function

∣ ∣⊥ ⊥
G k k( ˜ , ˜ )s i

2 is determined by the SPDC crystal, in such a
way that its width in transverse wavevector space δkG

depends inversely on the crystal length L. Likewise, the

function ∣ + ∣⊥ ⊥
S k k( ˜ ˜ )s i

2 is determined solely by the pump, in
such a way that its width δkS corresponds directly to the pump
width in transverse wavevector space. If δL k( )c S denotes the
crystal length such that δ δ=k kS G it then follows that the
amplitude transfer mechanism is valid for δ≪L L k( )c S (i.e.
for δ δ≪k kS G); we refer to this regime as the short-crystal
regime [12, 20, 39–43].

Figure 2(a) shows, as a specific example, in the back-
ground: a simulation of the SPDC AS (equation (11)) for a β
barium borate (BBO) crystal of 1 mm length and a Gaussian
pump beam centered at 406.8 nm with μ= =W W 30 mx y

(corresponding to δ δ μ= = −k k2 0.047 mS
1), and in the

foreground: simulations of the CAS (equation (9)) corre-
sponding to seven values of ϕi (shown as white disks)
appearing at equal angular intervals on the <k 0sx side of the
AS. For three specific points (ϕ = ° ° °90 , 180 , 270i ) we show

in addition plots of the ∣ + ∣⊥ ⊥
S k k( ˜ ˜ )s i

2 and ∣ ∣⊥ ⊥
G k k( ˜ , ˜ )s i

2

functions, from which one obtains the CAS when multiplied
together. Note that while δkS remains unchanged around the

SPDC annulus, both δkG and the orientation of ∣ ∣⊥ ⊥
G k k( ˜ , ˜ )s i

2

vary as a function of ϕi. This implies that Lc depends both on
δkS and on ϕi, as indicated in figure 2(b). Note that, inter-
estingly, the short-crystal regime (region under the curves in
figure 2(b)), within which the transverse amplitude may be
faithfully transferred, can be significantly expanded for
ϕ = °270i as compared to ϕ = °90i and ϕ = °180i .

In the short-crystal regime, the signal-mode heralded
single photon is determined solely by the pump, i.e. the
crystal properties play no role. In particular, the transverse
amplitude becomes a displaced version of the pump trans-
verse amplitude, i.e.

∫Ψ ω ω= + −⊥ ⊥ ⊥ ⊥ ⊥( ) ( )Sk k k k k˜ d ˜ , ˜ , (13)i
s

s s i s p i
s

while the CAS is identical to the pump AS, except displaced,
i.e.

= +⊥ ⊥ ⊥ ⊥( ) ( )R Sk k k k˜ , ˜ ˜ ˜ . (14)c s i s i
(0)

2
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2.4. The conditional transverse intensity (CTI) and the SPDC
transverse intensity (TI)

So far, we have studied SPDC light in the transverse wave-
vector domain. We are also interested in the picture provided
by the transverse position domain. This leads to a third
quantity of interest, namely the CTI of the signal-mode,
heralded single photon, which is evaluated in the transverse
position ρ⊥

s rather than the transverse wavevector ⊥ks .
This quantity can be measured through spatially-resolved

photon counting on a Fourier plane (FP2) located at distance
f2 2 from FP1, with a lens of focal length f2 placed symme-
trically between FP1 and FP2. Mathematically, this mea-
surement is represented by the expectation
value ρ ρ⊥nTr ( ˆ ( ˜ ) ˆ )s s s , defined in terms of annihilation operators
in the transverse position domain

∫ρ π= ρ
μ μ

⊥ − ⊥ ⊥⊥ ⊥
a ak kˆ ( ) (4 ) d e ˆ ( )k2 1 i · , and evaluated with

respect to a mixed state in the form of equation (7), with the
reduced signal-mode heralded single photon state
(equation (13)), as

∫

∫

ρ

π

ℛ = −

× +ρ

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥⊥ ⊥

( )( )

( )

u

S

k k k

k k k

˜ d ˜

1

(2 )
d e . (15)

c s i i i

s s i
k

2
i · ˜

2

s s

Applying the shift theorem, and noting that the phase

ρ⊥ ⊥
i kexp ( · ˜ )s i is suppressed by the absolute value, the

integral over
⊥

k̃i becomes simply a constant M2 and the
heralded single photon CTI reduces to

Sρ ρℛ =⊥ ⊥( ) ( )M˜ ˜ , (16)c s s2
2

in terms of the Fourier transform of the pump transverse
amplitude S ρ⊥( ˜ )s . In the derivation of equation (16) we have
considered an idler-mode conditioning detector with a non-
vanishing transverse acceptance. Then, interestingly, the
signal-mode heralded single photon CTI is identical in shape
to the pump TI, despite averaging over the angular acceptance
of the idler detector.

The fourth quantity of interest is the SPDC TI, which
corresponds to the spatially resolved rate of single-channel
counts on FP2. Mathematically this corresponds to ρ〈 〉⊥n̂ ( ˜ )s s ,
where the expectation value is computed with respect to the
two-photon state (see equation (1)). This leads to the fol-
lowing expression

∫

∫

ρ

π

ℛ =

× +ρ

⊥ ⊥

⊥ ⊥ ⊥⊥ ⊥

( )

( )S

k

k k k

˜ d

1

(2 )
d e , (17)

s i

s s i
k

2
i · ˜

2

s s

which is similar to that in equation (15), except that the
integration domain for ⊥ki is unconstrained. Again applying
the shift theorem, this can be reduced to

Sρ ρℛ =⊥ ⊥( ) ( )M˜ ˜ , (18)s s1
2

whereM1 is a constant proportional to the the idler-mode flux.
Because the domain of integration for M1 is unconstrained as
opposed to that for M2, clearly >M M1 2. Apart from the
difference in count rate, the heralded single photon CTI
(equation (16)) and the SPDC TI (equation (18)), interestingly
have identical shapes.

The fact that the functions ρℛ ⊥( ˜ )c s and ρℛ ⊥( ˜ )s are
identical implies that there are no signal-idler spatial corre-
lations between the idler-mode conditioning photons col-
lected on FP1 and the signal-mode conditioned photons
detected on FP2. In other words, a small shift in the position
of the conditioning detector on FP1 will not lead to a modified
spatial structure of the conditioned photon resolved on FP2.
This can be understood also, with the help of the Fedorov
criterion for the presence of correlations [44], which

Figure 2. (a) Background: contour plot of the SPDC AS.
Foreground: white disks indicate locations of the fixed conditioning
detector, on the <k 0sx half of the SPDC angular spectrum,
separated at equal angular intervals of 30°. To each of these disks
corresponds a CAS function shown on the diametrically opposed
portion of the angular spectrum. For three specific disks, we present
in addition plots of ∣ + ∣⊥ ⊥

S k k( ˜ ˜ )s i
2 (equation (12)) and ∣ ∣⊥ ⊥

G k k( ˜ , ˜ )s i
2

(equation (2)), from which one obtains the CAS when multiplied
together. (b) Critical length Lc plotted as a function of the pump
beam width δk in transverse k-vector space, for a fixed idler detector
location ϕi.
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essentially equates the ratio of the width of the single-channel
count distribution to the width of the coincidence count dis-
tribution with the strength of the correlations.

It is surprising that while the two-photon state is entan-
gled in transverse wavevector, propagation of the signal and
idler photons through specific optical systems can render the
transverse position correlations essentially non-existent. The
joint amplitude which characterizes the two-photon state
evidently has both amplitude and phase; while the overall
entanglement in both amplitude and phase must remain
constant as the signal and idler propagate through arbitrary
lossless optical systems, the measured joint spatial intensity
suppresses phase information. Thus, it becomes possible for
entanglement to fully migrate to the phase so that when
measuring the joint intensity on specific planes of detection
(in our case FP1 for the idler and FP2 for the signal), the
correlations essentially vanish [45, 46].

The discussion in the previous paragraph is linked to the
treatment of SPDC propagation through fractional Fourier
transforms, see [47]; in that work, the independent transit of
the signal and idler photons through post-generation optical
systems is characterized by phases α (for the signal) and β (for
the idler). It is shown that for α β+ = 0 (mod π2 ) transverse
position correlations are maximal and positive, for α β π+ =
(mod π2 ) transverse position correlations are maximal and
negative, and for α β π+ = 3 2 (mod π2 ) transverse position
correlations are minimized. Each Fourier transform (e.g. from
the C to the FP1 planes, and from the FP1 to the FP2 planes)
leads to a phase of π 2. While the idler detected on FP1 leads
to β π= 2, the signal collected on FP2 leads to α π= so that
α β π+ = 3 2.

2.5. BG pump beams: non-diffractive behavior and OAM

The discussion presented so far is applicable for an arbitrary
pump beam. We have seen that for a sufficiently thin crystal
and/or a sufficiently compact pump beam in transverse
wavevector space (short-crystal regime), the transverse
amplitude of the pump may be transferred to a signal-mode
heralded single photon when conditioned by the detection of
an idler photon with a well-defined transverse wavevector.

In actual experiments, we are therefore free to use a
pump beam according to particular needs. In our own
experimental work (see next section), we initially used a
Gaussian pump beam, for which we on the one hand verified
that faithful transverse amplitude transfer indeed occurs
within the short-crystal regime, and on the other hand we
observed the effects of departing from this short-crystal
regime.

We also used a second class of pump beams, namely BG
beams, which exhibit a number of interesting properties. A
BG beam is a conical coherent superposition of Gaussian
beams, each with a radius at the beamwaist parameter w0, and
with a cone opening half-angle k karcsin( )t p , where kt is the
transverse wavenumber and kp is the pump wavenumber. For
a BG beam of order l, the transverse amplitude can be written

as

ϕ

= − ∣

×

⊥ ⊥

⊥

( )S A
w

I
k w

il

k k
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where A is a normalization constant, I (. )l is an lth order
modified Bessel function of the first kind and
ϕ = k karctan ( )y x [33]. The w0 parameter may be obtained
from the width Δκ of the characteristic annular shape of the
BG beam AS ∣ ∣⊥S k( ) 2, according to the relationship

Δκ=w 40 . When viewed in the transverse position ρ⊥

domain, the transverse amplitude as a function of the
propagation distance z becomes
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in terms of μ = + z z1 i r with =z k w 2r p 0
2 the Rayleigh

range of the pump, the lth-order Bessel function J (. )l and a
normalization constant A′.

There are two noteworthy properties of BG beams which
relate to our initial motivation to use these beams. On the one
hand, BG beams of all orders exhibit a non-diffractive
behavior. Indeed, the beam has a TI which remains essentially
unchanged over a propagation distance =z w k k2max p t0 ,
where kp is the pump wavenumber. On the other hand, for
orders ⩾l 1, BG beams exhibit OAM with a topological
charge l. Within the short crystal regime, in which the
transverse amplitude of the pump beam is faithfully trans-
ferred to the heralded single photons, we expect that both of
these properties, non-diffractive behavior and the presence of
OAM, will likewise be transferred to the heralded single
photon. Note that because an optical vortex is fundamentally
defined by a phase ϕilexp ( ), a vortex pump in the SPDC
process is ideal to demonstrate transverse amplitude transfer
to a heralded daughter photon.

The ability to control the transverse spatial intensity
pattern at the single photon level, while also achieving non-
diffracting behavior, is notable. Applications could be found
in the area of free-space quantum communications, where the
ability of a non diffracting beam to maintain its form despite
the presence of obstacles [48] and/or despite propagation
through a turbulent medium [49, 50] would be particularly
useful. Applications could likewise be found in the controlled
interaction of single photons with atoms and/or ions in the
linear arrangement of an ion trap or an optical lattice.

3. Experimental results

The general scheme used in our experiments is summarized in
figure 1. In all cases, a BBO crystal of 1 mm length, placed on
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plane C, was used for the generation of SPDC photon pairs. A
diode laser centered at 406.8 nm with ∼100 mW power was
used as pump.

3.1. Gaussian beam pump

Our first experiment involved a Gaussian beam pump; details
of this experiment are presented in [13]. The beam from the
diode laser was spatially filtered so as to obtain a high-quality
Gaussian beam with measured waist parameters

μ=W 182.0 mx and μ=W 189.0 my (see equation (12)); when
used directly, this pump beam will be referred to as config-
uration 1. Our approach was to vary the degree of focusing,
characterized by parameters Wx and Wy, so as to control
whether or not the source is in the short-crystal regime (the
beamwaist W0, taken here as the average of Wx and Wy,
corresponds to a region in transverse wavevector space of
radius δ =k W2 0). Thus, for configuration 1 we have
δ μ= −k 0.0076 m 1. Focusing the beam using a f = 6 cm focal
length lens, we obtained a Gaussian beam with measured
waist parameters μ=W 38.9 mx and μ=W 34.7 my , to be
referred to as configuration 2 (corresponding to
δ μ= −k 0.038 m 1).

The SPDC photons are transmitted through a λ > 490
nm long wave pass filter followed by a bandpass filter cen-
tered at 810 nm with a 10 nm bandwidth, so as to suppress
pump photons and restrict the SPDC bandwidth. An f–f
optical system is used in order to yield a Fourier plane (FP1 in
figure 1) on which we can probe the signal and idler trans-
verse momentum distributions. Specifically, a =f 101 cm
focal length lens is placed at a distance of 10 cm from the C
plane, which defines FP1 at a distance of 10 cm from the lens.

The CAS is measured using spatially-resolved condi-
tional photon counting on FP1. For this purpose, we have
used two independent fiber tips of large-diameter fiber
( μ200 m core diameter), placed at diametrically-opposed
regions of the SPDC annulus; while one fiber tip (corre-
sponding to the idler photon) is left in a fixed position, the
other fiber tip (corresponding to the signal photon) can be
displaced laterally along the x and y directions with the help
of a computer-controlled motor (50 nm resolution and 1.5 cm
travel range). The fibers lead to Si avalanche photodiodes (D1
and D2), with their outputs connected to standard pulse-
counting equipment to obtain number of detection events per
second data.

In order to study the behavior of the transverse amplitude
transfer mechanism for configurations 1 and 2 (see above), we
compare the measured CAS, with the AS of the pump beam
(plotted from equation (12)) and the numerically obtained
CAS (from a simulation based on equation (9)). In the
experiment, we placed the conditioning detector at point with
ϕ = °180i (see figure 2(a), involving =⊥k 0iy and a ⊥kix value
which maximizes the counts). The signal-mode detector (D2)
is then scanned around the diametrically-opposed point, in an
area centered around the point for which transverse momen-
tum conservation is fulfilled. Note that the fiber used for idler-
mode collection is highly multi-mode and its angular

acceptance function corresponds to the function −⊥ ⊥
u k k( ˜ )i i ,

which we model as a Gaussian function with a full width at
e1 of μ200 m. Detection over many transverse fiber modes

leads to the incoherent sum over idler transverse wavevectors
in equation (7).

In figure 3, the top/bottom row corresponds to config-
uration 1/2. In figures 3(a) and (d) we show the experimen-
tally measured CAS, while in 3(b) and (e) we show
corresponding numerical simulations obtained from
equation (9); note the excellent agreement between mea-
surements and simulations. Figures 3(c) and (f) show the AS
of the Gaussian pump beam used in the experiment, plotted
from equation (19). For the measurements shown in panels
3(a) and (d), data was taken on a grid of transverse position
values, centered around a transverse position diametrically
opposed to the location of the idler-mode fiber. Grid points
are characterized by the fiber tip’s transverse position ρ⊥

s0,

corresponding to transverse momentum ρω=⊥ ⊥cfk [ ( )]s s s0 1 0.
The transverse dimensions of the fiber core which collects
photons are indicated by a white circle which is shown in
each panel’s bottom-left corner. In some cases, the transverse
width of the collection fiber can be significant when compared
to the CAS width.

It is evident from figure 3 that for configuration 1, the
CAS closely resembles the pump AS in shape, as is expected
since this configuration lies within the short-crystal regime. In
contrast, for configuration 2 the CAS is elongated and tilted
and does not resemble the pump AS; again, this is expected
since this configuration is not in the short-crystal regime.

3.2. Bessel gauss pump

The use of a Gaussian beam pump discussed in the previous
subsection served to verify our correct understanding of AS
transfer through heralding in the SPDC process. However, we
also carried out experiments with a pump exhibiting greater
spatial structure, in particular BG beams, which exhibit non-
diffractive behavior and, for ⩾l 1 orders, contain OAM;
details of these experiments are presented in [37] and [38].

In our experiments, we have prepared a BG beam with a
topological charge of l = 0, l = 1 or l = 2, to be used as pump
in the SPDC process. The beam from a diode laser is first
magnified appropriately, using a first telescope, so as to
illuminate an axicon, i.e. a conical lens, which maps the
incoming Gaussian beam to a BG beam of order 0. The kt
parameter of the BG beam (see equation (19)) can then be
controlled with a second telescope placed following the axi-
con. For orders 1 and 2, a vortex phase plate (a device which
imparts a linear azimuthal phase gradient covering 0 to π2
radians for order 1 or 0 to π4 radians for order 2) is placed on
the internal Fourier plane in the second telescope.

Figure 4 shows for the prepared BG beams, measure-
ments of the TI (in the first column) and the AS (in the second
column), obtained with a high-resolution CCD camera; orders
0, 1 and 2 are shown on the first, second, and third row
respectively. While the TI was measured by a CCD camera on
the C plane, the AS was measured using an f–f system with its
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Figure 3.Measured (a), (d) and numerically calculated (b), (e) CAS (through equation (9)) of the signal-mode heralded single photon. AS of
the Gaussian pump beam (c), (f), plotted from equation (19). First row: configuration 1, second row: configuration 2.

Figure 4. BG pump properties: (a), (c), (f) Measured angular spectrum, (b), (d), (g) measured transverse intensity, (e), (h) far-field diffraction
pattern through an triangular aperture. First row: l = 0, second row: l = 1,and third row: l = 2.
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input plane coinciding with the C plane and a CCD camera on
its output plane.

In figure 4(b), for an l = 0 order BG beam, we may
appreciate the expected transverse shape, i.e a central spot
surrounded by a set of concentric rings, and the corresponding
AS in figure 4(a), i.e. an annulus with radius kt and width
Δ =k w4 0. The measured values of kt are μ0.046 m−1,

μ0.022 m−1, and μ0.022 m−1 for l = 0, l = 1, and l = 2
respectively. Likewise, in the second and third rows, for l = 1
and l = 2 leading to the presence of OAM, we may appreciate
the expected shape, i.e. a central intensity null (which is
consistent with a phase singularity) surrounded by concentric
rings and the corresponding AS which is similar to the l = 0
AS. The slight departure from azimuthal symmetry can be
attributed to imperfections of the axicon and/or vortex phase
plate.

In our experimental work we exploit a technique pio-
neered by Hickmann et al [51–53], through which the topo-
logical charge of an optical vortex beam can be revealed via
the far-field diffraction pattern through a triangular aperture.
Specifically, it was found in the cited papers that the far-field
diffraction pattern of an optical vortex with the phase singu-
larity aligned with the center of a triangular aperture is formed
by a triangular arrangement of intensity lobes, with the
number of such lobes correlated to the topological charge.
The topological charge m is then given by −N 1 where N is
the number of lobes (discounting secondary lobes) on any
side of the triangular intensity pattern. In our experimental
work, we use this technique in order to characterize the OAM
properties of, both, pump and SPDC light.

The third column in figure 4 shows, for orders l = 1 and
= 2, the far field diffraction pattern through a triangular
aperture. The expected intensity distributions involving three
lobes for l = 1 (figure 4(e)) and six lobes for l = 2 (figure 4(h))
can be readily appreciated, thus verifying the presence of
OAM in the pump beam.

In order to visualize the propagation properties of the BG
pump beams, figure 5 shows a plot of the measured transverse
pump intensity distribution along the y direction, measured
with a CCD camera, as a function of the propagation distance
z (with z = 0 on the C plane). Panels a, b , and c correspond to
BG beams of order 0, 1, and 2, respectively. Note that in all
three cases there is a significant propagation distance over
which the TI remains essentially unchanged. We found that
for the l = 1 and l = 2 beams, the non-diffractive distance is
somewhat less than for the l = 0 beam, probably because of
imperfections in the vortex phase plates.

Figure 6 shows the spatial properties of the photon pairs
as measured on FP1. While the first, second and third row
corresponds to topological charge 0, 1, and 2, respectively,
the first column corresponds to the measured AS, and the
second column corresponds to the measured CAS. The AS
measurement is obtained by scanning a fiber tip on FP1,
leading to a single-photon detector; this represents the well-
known SPDC annulus which for a Bessel–Gauss pump can
have an asymmetry related to pump Poynting vector walk off,
which is most evident in panel (a). The CAS measurement is
carried out by placing a fiber tip leading to a conditioning

detector at the location indicated by a dot on the right hand
side of the AS (panels a, d and g) and scanning a second tip,
leading to a second detector, around the diametrically
opposed point. For these three configurations, the idler col-
lection is centred at ϕ = °270i ensuring for our experimental
parameters, that these configurations are in the short-crystal
regime. Therefore, the CAS should be ideally identical in
shape to the pump AS. The fact that the former has a greater
width is related to the transverse width of the conditioning
and scanning fiber tips.

By placing a second lens (L2, focal length f = 15 cm) at a
distance of 15 cm from FP1, we can define a second Fourier
plane (FP2) a distance of 15 cm from the lens (see figure 1).
In figure 7 we show measurements of the SPDC TI, obtained
by a single scanning fiber tip (with μ50 m diameter) on FP2
leading to pulse-counting equipment. In this figure we also
show measurements of the CTI, for which the conditioning
fiber tip (with μ200 m diameter) is still on FP1 while the
scanning fiber tip (with μ50 m diameter) is on FP2. While the
first, second and third row corresponds to topological charge
0, 1, and 2, respectively, the first column corresponds to the
measured TI, and the second column corresponds to the
measured CTI. Note the TI and CTI are essentially identical in
shape, as expected from equations (16) and (18).

Because BG beams are non-diffractive, and our BG-
pump experimental configurations are in the short-crystal
regime, we expect that the signal-mode heralded single pho-
tons will likewise be non-diffractive. In order to study the
propagation properties of the heralded single photons we have
displaced the plane on which the signal-mode fiber tip is
scanned, from its initial position corresponding to the plane
FP2 (regarded as z = 0), and have collected signal-idler
coincidence data for each propagation plane. In figure 8 we

Figure 5. Non-diffracting behavior in propagation of the BG pump
beam of order: (a) l = 0, (b) l = 1 and (c) l = 2.
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show the resulting signal-idler coincidences as a function of
the y coordinate, for a number of propagation planes, along z,
covering a propagation distance of 40 cm. While figure 8(a)
corresponds to l = 0, figure 8(b) corresponds to l = 1. It can be
appreciated that the shape of the signal-mode TI remains
essentially unchanged over a propagation distance surpassing
25 cm, with the maximum number of coincidence counts
exhibiting a gradual decline, showing a clear indication of
inherited non-diffracting behavior at the single photon level.

Besides the observed non-diffractive behavior, we are
interested in studying the transfer of OAM from the pump to
our heralded single photons, for the case of a BG pump of
topological charge ⩾l 1. In order to verify the vortex nature
of the heralded signal photons, we placed a diffracting equi-
lateral triangular aperture with sides of μ500 m length on FP2.
A lens (focal length f = 3 cm) is placed a distance of 3 cm

from FP2, so as to define a third Fourier plane (FP3) a dis-
tance of 3 cm from the lens. The far field diffraction pattern is
obtained by retaining the fixed conditioning idler detector on
FP1 and placing a μ50 m diameter fiber tip on FP3; we scan
the transverse position of this fiber tip while monitoring sig-
nal-idler coincidence counts. The resulting data, i.e coin-
cidence counts between idler photons collected on FP1 and
signal photons collected on FP3 as a function of the position
of the signal-mode fiber tip constitutes a measurement of the
far-field diffracted heralded signal-mode TI. The single-pho-
ton diffraction pattern obtained for l = 1, shown in figure 9(a),
has the expected three-lobe structure, and is very similar to
that obtained for the pump (figure 4(e)). Likewise, the dif-
fraction pattern obtained for l = 2 (figure 9(b)) has the
expected six-lobe structure, and is very similar to that
obtained for the pump (figure 4(h)). These results constitute a

Figure 6. First column: SPDC angular spectrum, second column: conditional angular spectrum. First row: l = 0, second row: l = 1, and third
row: l = 2.
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clear indication that in both cases (l = 1 and l = 2) the signal-
mode heralded single photon is a vortex wave. Thus, we have
demonstrated the successful transfer of a classical vortex to
the transverse amplitude of the heralded single photon.

4. Conclusions

Our main interest in this work is the preparation of single
photons with a configurable transverse shape. For this
purpose, we have relied on the SPDC process, together with
the use of a structured pump to be used as pump. By
resolving the generated photon pairs in transverse wave-
vector space with standard Fourier optics techniques and

detecting an idler photon with a well-defined transverse
wavevector, we may herald a single photon in the signal
mode with a transverse amplitude which under certain
conditions can be identical to the transverse amplitude of
the pump. The specific regime in which this transverse
amplitude transfer mechanism occurs corresponds to: (i) the
use of a sufficiently short crystal, or (ii) the use of a suffi-
ciently compact pump beam in transverse wavevector
space, or (iii) an appropriate combination of the latter two
conditions.

While transverse amplitude transfer can occur for a pump
with an arbitrary transverse structure, in this work we have
concentrated on Gaussian and BG beams. For the former, we
have both verified that the transverse amplitude transfer

Figure 7. First column: single-photon, signal mode transverse intensity, second column: conditional transverse intensity. First row: l = 0,
second row: l = 1, and third row: l = 2.
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mechanism occurs and studied the effect of a departure from
this regime.

BG beams are interesting on a number of fronts. On the
one hand, BG beams exhibit a non-diffractive behavior, i.e.
the TI remains unchanged over a certain propagation distance.
On the other hand, BG beams with orders ⩾l 1 have OAM.
In our experiment we implemented high quality BG beams
with orders l = 1 and l = 2 and showed that: (i) within the
short-crystal regime the pump AS may be successfully
transferred to the signal-mode heralded single photon, (ii) the
heralded single photon ‘inherits’ the non-diffractive behavior
from the pump, and (iii) for BG beams of orders l = 1 and

l = 2, the heralded single photon becomes a vortex, with
OAM ‘inherited’ from the pump.

The ability to confer an arbitrary transverse shape to a
single photon is an important technology. In our approach,
we first shape a (classical) beam as required via phase/
amplitude spatial light modulation, and thereafter transfer
this shape to a single photon through heralding. We hope
that the manipulation of the transverse shape of single
photons demonstrated here will be useful for the imple-
mentation of quantum information processing schemes
which seek to exploit the spatial degree of freedom of single
photons.

Figure 8.Measured heralded single-photon intensity, as a function of y, under propagation along z, for BG pump of order l = 0 (panel a) and
l = 1 (panel b).

Figure 9. Measured far-field, single-photon diffraction pattern through a triangular aperture, obtained for a BG pump beam of order l = 1
(panel a) and l = 2 (panel b).
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