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We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs)
operated in gated mode. In particular, our method permits an estimation of the fraction of counts that actually
results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by
afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the
full operation bandwidth, either with or without resorting to the application of a dead-time. As we show below,
our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude,
even near saturation. The algorithms that we have developed are suitable to be used either in real-time
processing of raw detection probabilities or in post-processing applications, after a calibration step has been
performed. The algorithms that we propose here can complement technologies designed for the reduction of
afterpulsing. © 2016 Optical Society of America

OCIS codes: (040.1345) Avalanche photodiodes (APDs); (030.5260) Photon counting; (120.0120) Instrumentation, measurement,
and metrology.
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1. INTRODUCTION

Single-photon detectors based on avalanche photodiode (APD)
technology can at present be operated at room temperature
with low power consumption and moderate-to-high efficien-
cies. They have been used widely in quantum key distribution
(QKD) [1,2], light detection and ranging (LIDAR) [3], optical
time-domain reflectometry (OTDR) [4], fiber optical sensing
[5], biomedical applications [6], chemical sensing [7], and pho-
tonics research [8], among other applications requiring weak
optical signal sensing.

APDs are able to detect weak optical signals at the single-
photon level. This is achieved using avalanche multiplication
of photon-excited carriers, when they are biased above their
breakdown voltage. These avalanches (breakdown events) pro-
duce large enough currents that can be registered employing
low-power electronic discriminators [9]. APDs can be operated
either in free-running mode or in gated mode [10].

APDs have two main sources of noise [11–13]: dark-count
noise and afterpulsing noise. The first kind, dark-count noise,
has its origin in thermal transitions and quantum interband
tunnelling. Its probability of occurrence depends on the archi-
tecture and composition of the sensors, as well as on voltage and
temperature settings. If these settings are kept constant, this

noise is time-independent. If a significant number of carriers
travel trough the APD during the activation gate (as in a break-
down event), they are able to populate carrier-traps in the APD
multiplication layers. Later on, they can be spontaneously re-
leased, inducing spurious secondary breakdown events in the
subsequent activation gates. This noise contribution is known
as afterpulsing noise, which we will refer to simply as afterpuls-
ing. In order to reduce the afterpulsing in the first generation of
commercial InGaAs APDs, they should be gated using up to
megahertz (MHz) frequencies, with the width of each activa-
tion gate set to a few nanoseconds (ns). Furthermore, it is nec-
essary to apply a dead-time of a few microseconds (μs) after
each breakdown event, in order to allow de-trapping of carriers.
This dead-time imposes a limit on the maximum count rate
achievable in the APDs.

Afterpulsing has strong implications on the security of QKD
systems: it limits the raw key generation rate, requiring the
optimization of dead-time duration [1,14]; it must be included
in the quantum error correction of the distillation of secret keys
[15], as well as in security proofs and tests [16–18].

Two important goals in the development of APD technol-
ogy [19,20] are to reduce afterpulsing and to develop charac-
terization techniques to improve the ability to discern genuine
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optical signal events from afterpulsing noise. A number of tech-
niques have been proposed for the reduction of afterpulsing,
based on: signal comparison [21], increasing the operating
APD temperature [22,23], passive quenching with an active
reset [24], negative feedback [25–28], sub-Geiger avalanche
gain operation [29], and photoionization of trapped carriers
[30]. The most recent generation of single-photon detectors
based on InGaAs APDs employs additional techniques to re-
duce afterpulsing, such as self-differentiating post-processing
[31,32] and sine-wave gating [33–37]. While these techniques
lead to a reduction of afterpulsing, the full suppression of after-
pulsing remains a challenge, in particular for higher detection
efficiencies. Under intense background light the APD opera-
tion range is limited by the afterpulsing generated outside the
activation gates [16,37].

Alternative technologies for single-photon detection exist,
such as: (i) up-conversion, e.g. using periodically-poled LiNbO3

(PPLN) [38], together with detection using Si APDs; and (ii)
superconducting nanowire detectors [39]. They are also suscep-
tible to afterpulsing [40–42], as are other existing detection tech-
nologies, such as photomultiplier tubes [43,44] and multi-pixel
photon counters (MPPC) [45,46].

Afterpulsing is a complex stochastic self-interacting
phenomenon, which is proportional to the incoming light
intensity. A number of techniques have been used to study
it, including: time interval analysis [47–49], the double-gate
method [14,50,51], temporal distribution (background decay)
[37,52,53], in-gate effect of afterpulsing [9,10,31], corrections
in g !2"!τ" correlation measurements [23,30,54,55], modified
double-gate method (in order to study higher-order afterpuls-
ing) [10,56], and other studies of the dependence of afterpuls-
ing on operation settings [11,22].

Due to the electric field anisotropy in the internal structure
of APDs, there are ensembles of carrier-traps with associated
energy distributions. In the multiple exponential decay func-
tion (MEDF) approach [14,19,48,52,57] each time constant
is related with a particular carrier-trap energy [52,58]. More
sophisticated models introducing carrier-trap energy distribu-
tions are discussed in [52,59,60]. The most widely used model
to study afterpulsing is an effective single exponential decay
function (SEDF) [14,19,48,52,57,58,60], with parameters
determined by the corresponding mean values over the carrier-
trap ensemble.

In what follows we use an SEDF model, which as we show
below results in signal-extraction algorithms which can be imple-
mented in real time, thanks to its low time-processing cost. The
formalism can be extended to MEDF or carrier-trap distribution
models as well, which are better suited for post-processing of
acquired data. Having fully characterized the afterpulsing and
dark-count noise parameters through a calibration procedure,
the extraction of the photodetection signal probabilities is
obtained with our algorithms from the raw mean detection prob-
ability measurements, even without the need to resort to the ap-
plication of dead-times. The detection efficiency can be obtained
with the use of an independently calibrated optical source.

It is important to point out that our algorithms presented in
this paper cannot discriminate afterpulsing from the genuine
photodetection signal, on an event-by-event basis as required

for sharing secret keys in QKD systems. Our algorithms allow
a systematic estimation of the resepctive fractions of events due
to genuine photodetection, afterpulsing, and dark noise. Our
model provides a more complete picture of the physics behind
avalanche photodiodes, allowing the study of statistical and
security issues of QKD systems based on this kind of detector.

This paper is organized as follows: in Section 2, we describe
the afterpulsing models. The counting rule for raw probabilities
without dead-time is presented in Section 3, and with dead-
time in Section 4, using a time series analysis as an intermediate
step. The experimental calibration procedure and the fitting
algorithm are discussed in Section 5. Also, we present an ex-
perimental application of our methodology in Section 6.
Section 7 summarizes our conclusions. Finally, we include three
appendices, in which we discuss special topics of this work: in
Appendix A we describe the convergence in the afterpulsing
probability introduced in Section 3; in Appendix B we present
the calculations for fitting parameter errors and confidence in-
tervals; and finally, in Appendix C we show a phenomenologi-
cal correction to the SEDF model, so as to account for an effect
which we refer to as sub-counting, induced by the electronic
voltage discriminator, which converts the avalanche signal into
a logic ON/OFF signal.

2. AFTERPULSING MODELS

We employ an SEDF model under the following assumptions:

• Afterpulsing is cumulative in the absence of the applica-
tion of dead-time. Saturation of the electronic logic circuit in
the APD modules occurs earlier, i.e., for a lower incoming
intensity, than saturation of the carrier-traps. Thus, complete
carrier-trap saturation is never reached.

• All breakdown events contribute on average equally to
afterpulsing. This implies that the afterpulsing probability
amplitudes are the same for all breakdown events.

• The de-trapping time constants and temporal probability
amplitudes are the mean values over the corresponding carrier-
trap ensembles.

• The activation gate duration is shorter than the de-
trapping time constant, so that afterpulsing in each time gate
is generated by breakdown events in previous gates. Note that if
this assumption is not valid, intra-gate afterpulsing corrections
must be taken into account [9,10,31].

A. Simple Afterpulsing Model
In the SEDF model, the afterpulsing detection probability is
modeled as

Paf !t" #
Q
τ

exp

!
−
t
τ

"
; (1)

where Q is a temporal constant related to the number of filled
carrier-traps, which determines the probability of generating an
afterpulsing breakdown event [52,57]. τ is the de-trapping time
parameter; Q∕τ!≤ 1" represents the probability amplitude of
producing an afterpulsing event. The values of Q and τ depend
on the APD structure, and on the voltage and temperature
settings.

As the APD operates in gated mode with a period T and
activation gate time-width tw, it is convenient to write a dis-
cretized version of Eq. (1) as follows:

Research Article Vol. 55, No. 26 / September 10 2016 / Applied Optics 7253



P!n"
af #

Q
τ

exp

!
−
n
Fτ

"
; (2)

where F ≡ 1∕T is the operation frequency and P!n"
af is the prob-

ability of occurrence of an afterpulsing avalanche, due to de-
trapping of charges from an avalanche taking place at a moment
in time corresponding to n gates in the past.

B. Multiple-exponential Decay Functions
In general, afterpulsing is generated by a distribution of carrier-
traps with different time regimes, requiring an MEDF model.
Since two different carrier-traps A and B can start avalanches
independently, but both avalanches can occur at the same time
gate, we use the probability addition rule

PA $ PB − PAPB # 1 − !1 − PA"!1 − PB": (3)

For K carrier-traps, with temporal constants Qk and
de-trapping time parameters τk, k # 1;…; K , Eq. (2) is gen-
eralized as

P!n"
af # 1 −

YK

k#1

!
1 −

Qk

τk
exp

!
−

n
Fτk

""
: (4)

The number of exponential decay functions needed to ob-
tain a reliable description of the afterpulsing noise depends on
the APD voltage and temperature settings [50]. Nevertheless,
in many situations it is worth using the simplest possible
description of afterpulsing, with few parameters, in order to
simplify the model and reduce the processing time.

3. COUNTING RULE WITHOUT DEAD-TIME

The total raw detection probability (click probability) includes
genuine photodetection, dark counts, and afterpulsing. These
are independent processes, whose probabilities are added
according to the rule in Eq. (3).

The initial gate of a finite sequence of gates has only two
contributions, i.e. dark-count noise (Pdc) and photodetection
(Pph), resulting in a click probability P!1"

c given by

P!1"
c # 1 − !1 − Pdc"!1 − Pph": (5)

Photodetection of an attenuated laser beam is governed by
the Poissonian statistics of a coherent state. For this kind of
source, the photodetection probability is Pph # 1 − exp!−ημ",
where μ is the mean photon number per gate of the light source
and η is detector efficiency.

The probability P!1"
c (photodetection and dark-count noise)

remains constant throughout all gates in the sequence. We will
thus regard Ps ≡ P!1"

c as a seed probability, which can cause
afterpulsing noise in subsequent gates. At a given gate n, the
click probability takes into account afterpulsing due to all
breakdown events in previous gates, ending up with the follow-
ing click probability

P!n"
c # 1 − !1 − Ps"

Yn−1

j#1

!1 − P!n−j"
c P!j"

af ": (6)

We refer to the above expression of the click probability in
the nth gate as the forward building method (FBM). The FBM
may be used in order to characterize the parameters of the

afterpulsing noise probability in sequences with a reduced
number of gates.

If the number of gates in the sequence is sufficiently large,
the raw count probability P!n"

c converges to its asymptotic mean
value P!∞"

c at any activation gate. This convergence is discussed
in Appendix A. In this case we obtain the simplified expression

P!∞"
c # 1 − !1 − Ps"

Y∞

j#1

!1 − P!∞"
c P!j"

af "; (7)

which is referred to as the backward building method (BBM).
The infinite product of Eq. (7) includes all afterpulsing con-

tributions from previous gates; we call it the afterpulsing prob-
ability core (APC).

In the SEDF model, the APC resembles the q-Pochhammer
function [61] !a; q"∞, defined as

!a; q"∞ ≡
Y∞

j#0

!1 − aqj"; (8)

with a → P!∞"
c Q∕τ and q → exp!−1∕!Fτ"", except for the

absence of the zeroth-order term.
This !a; q"∞ function is widely used in q-analogue theory, in

the description of exact statistical mechanics models [62],
entropy of chaotic dynamics of many-particle systems [63], and
avalanche-like processes in quantum networks [64].

4. COUNTING RULE WITH DEAD-TIME

In most measurements employing InGaAs-avalanche photodi-
odes a dead-time Δt is set after each avalanche, so as to reduce
the afterpulsing noise. In order to estimate the photodetection
probability Pph from the raw detection probabilities P!∞"

c , the
following considerations are employed:

1. After each detection event, a dead-time is applied. The
first active gate which occurs once the dead-time has expired is
referred to as the 0th-gate.

2. The probability of occurrence of an avalanche in the
nth-gate due to afterpulsing originating from the detection
event in question, without any cumulative correction, is

P!n"
af # 1 −

YK

k#1

!
1 −

Qk

τk
exp

!
−
n∕F $ Δt

τk

""
: (9)

3. The probability of observing a raw detection event
due to photodetection, dark counts, or afterpulsing at the
nth-gate is

p!n"c # 1 − !1 − Ps"!1 − P
!n"
af "; (10)

for n ≥ 0.
4. At each detection event, the gate count is reset to zero.

The probability that the nth-gate is not inhibited by a dead-
time period is

p!n"g #
#

1 if n # 0Q!n−1"
j#0 !1 − p!j"c " if n ≥ 1: (11)

Note that if no dead-time is applied, p!n"g # 1 for all values
of n.

5. The asymptotic raw detection probability is obtained as
an average over all probabilities:
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P!∞"
c #

P∞
n#0 p!n"c p!n"gP∞
n#0 p!n"g

: (12)

In this step we have performed a time-interval analysis of
afterpulsing, obtaining the time-interval distribution.

6. We estimate the number of gates after the 0th-gate at
which the subsequent detection event is expected, as

Ng #
P∞

n#0 np!n"gP∞
n#0 p!n"g

: (13)

The time interval after the 0th-gate, at which a subsequent
detection event is expected, is then NgT !# Ng∕F ".

7. Adding the dead-time interval Δt , which precedes the
0th-gate, we obtain the expected time between detection events

Δht # Δt $ Ng∕F : (14)

8. We now take into account possible afterpulsing noise
originating not only from the last detection event but from
previous detection events, so as to improve the counting rule.
Including the information about the average time between de-
tection events, Eq. (9) with cumulative afterpulsing correction
becomes

P!n"
af # 1 −

YM

m#0

YK

k#1

!
1 −

Qk

τk
exp

!
−
gnm
τk

""
; (15)

with gnm # nT $ Δt $ mΔht , and where M is the maximum
number of detection events which can originate cumulative
afterpulsing noise.

In cases where the dead-time is sufficiently large so as to
suppress most afterpulsing noise (i.e. Δht > maxfτkg), it is
sufficient to restrict the analysis to m # 0.

A. Case: Δt ≫ max !fτk g"
If the dead-time Δt is much longer than the decay times τk, the
afterpulsing noise becomes negligible. In this case p!j"c becomes
Ps, and defining p ≡ Ps and q ≡ 1 − p, the average number of
gates between two subsequent detection events, is expressed as

p!n"g # qn: (16)

The sum over all p!n"g ‘s appearing in Eq. (13) becomes

X∞

n#0

qn #
1

p
; (17)

X∞

n#0

nqn #
q
p2

; (18)

and Ng becomes

Ng #
1 − p
p

: (19)

Employing Eq. (14), the average time interval between sub-
sequent detection events becomes

Δht #
p!FΔt − 1" $ 1

pF
: (20)

Using Eq. (20), we estimate the average number of detection
events within a sampling time T S as

Nc #
T S

Δht
#

pFT S

p!FΔt − 1" $ 1
: (21)

Note that this expression remains valid in the limit p → 1,
giving Nmax

c # T S∕Δt . Note also that if Δt ≤ T , there is
effectively no dead-time because in that case, following any
given detection event the next gate will always be available
for detection.

We can invert the above equation, expressing the detection
probability in terms of known quantities: the sampling time
T S , the average number of detection counts Nc , the gating
operation frequency F, and the dead-time Δt :

p #
Nc

T SF − N c!FΔt − 1"
: (22)

Equation (22) is a generalization of the detection probability
correction with dead-time given in reference [8] for APDs
in gated mode. Note that T SF is the total number of gates
within the sampling time in the absence of dead-time, and
Nc!FΔt − 1" is the total number of gates removed during
dead-time intervals. The difference in the denominator is the
total number of active gates, and represents the upper bound
for the number of detection events. If the number of raw de-
tection eventsNc reaches this limit, there is a click at every gate,
thus saturating the probability of detection (p → 1).

5. AFTERPULSING CHARACTERIZATION

In this section, we present the methodology that we have used
in order to characterize dark-count noise, afterpulsing, and the
detection efficiency for a commercial InGaAs APD detector
(id201—IdQuantique). Afterpulsing is an intrinsic phenome-
non which appears for all APD module settings, but its effects
are stronger for higher gating frequencies and higher efficien-
cies. In what follows, we therefore concentrate our discussion
on experiments carried out with higher detection efficiencies.
Considering that the detector parameters can change with
detector age, calibration should be repeated perhaps a couple
of times per year.

A. Calibration Protocol
The experimental setup used for calibration purposes is illus-
trated in Fig. 1. We have used as the light source a continuous-
wave diode laser at 1550 nm (L: LDM1550—Thorlabs), with
its output power restricted by a calibrated variable optical
attenuator (VOA) (the VOA consists of a set of calibrated
neutral filters for coarse power adjustment, together with the
(calibrated) controlled separation between L and the fiber tip
of SMF, for fine power adjustment). The attenuated laser beam
is coupled, with the help of an aspheric lens (L), into a single-
mode fiber (SMF), which leads to the entrance port of the APD
module (APDM) [7]. The APDM is externally triggered by a
function generator (FG), with a gate frequency up to 7.6 MHz,
thus bypassing the internal delay. The FG and APDM are
computer-controlled in our data acquisition routine.

In our experiments, described below, we selected the follow-
ing APDM internal settings [7]:

(a) dead-time Δt ∈ f0; 10 μsg,
(b) nominal gate temporal width tw # 2.5 ns,
(c) nominal efficiency η ∈ f0.20; 0.25g.

Research Article Vol. 55, No. 26 / September 10 2016 / Applied Optics 7255



In addition, we have used the external parameters listed in
Table 1 for the calibration, which correspond to 171 configu-
rations. They consist of 19 different trigger frequency values
(F i), and two sets (S1 and S2) of 9 different mean photon
number values, each, per gate of the laser beam (μν). S1 is used
with η # 0.20, and S2 is used with η # 0.25. The mean
photon number fluxes were determined taking into account
the actual value of gate temporal width, ∼0.8 ns (as opposed
to the nominal vale of 2.5 ns). These fluxes are reported in
Table 1 and exhibit uncertainties of around 5%.

The average detection counts N iν, at a given operation fre-
quency (F i) and mean photon number (μν), are obtained
through averaging over 120 data samples with a sampling
time T S # 1s. In the absence of dead-time, the experimental
detection probabilities are calculated as

P!e"
c;iν #

N iν

T sF i
: (23)

When operating the APDM with dead-time, we employ
Eq. (22). The subindex i in P!e"

c;iν refers to each gating frequency
F i, while the subindex ν refers to each mean photon num-
ber μν.

B. Determining the Afterpulsing Parameters
Our approach is to determine the model parameters, i.e. the
probability amplitudes of afterpulsing detection fQkg and
de-trapping times fτkg, from the calibration experimental runs.
For each flux value, the seed probability Ps;ν [see Eq. (5)] must
also be determined. The dark-count probability Pdc is the seed
probability when there is no photon flux.

We determine these parameters by finding the parameter
values which yield the best fit between the theoretical raw de-
tection probabilities P!∞"

c;iν , across all frequency F i, and mean
photon number μν values, with the measured detection prob-
abilities P!e"

c;iν. We have in practice restricted the number factors
in APC, in such a manner that we include up to factor j such
that P!e"

c P!j"
af ≥ ε;, with ε # 10−10; we have verified that for this

value of ε; the output of our algorithm has already converged in
all cases.

The fitting algorithm maximizes the inverse of the sum of
the squares of the relative deviations, over all the experimental
measurements and their respective theoretical values,

IS #
$XN 2

ν#1

XN 1

i#1

!
P!e"
c;iν − P

!∞"
c;iν

P!e"
c;iν

"2%−1
: (24)

In the above expression, N 2 is the total number of different
mean photon number values, and N 1 the number of different
frequencies employed. This method is equivalent to the prob-
lem of minimizing the reciprocal quantity, S2r # IS−1, however,
with certain important advantages:

1. It leads to a sharper peak (as compared with the
corresponding trough for S2r # IS−1), which aids the use of
optimization algorithms (see Fig. 2).

2. The probability distribution of the previous point clari-
fies the possible presence of correlations among the carrier-trap
parameters.

We have employed the following steps to maximize IS
function:

1. Use as initial seed probabilities the click probability
value for the lowest trigger frequency Ps;ν # Pc;1ν.

2 Use as initial Q value the inverse of the central fre-
quency, 4 MHz, within the gating bandwidth (0–8 MHz).

3. Use as initial τ twice the value of the original Q value.
4. Find the Q and τ values which jointly maximize the IS

function.
5. Find the optimal seed probabilities for each curve.
6. Repeat steps 4 and 5. Decreasing the parameter

deviation, until its deviation is <0.1%.

In our case, we have used a multi-dimensional maximum
searching algorithm at each step. Each time the maximum value
is reached, the grid size is reduced one order of magnitude and
the grid spacing is reduced accordingly.

From the function S2r we can estimate the mean relative
fitting error per degree of freedom,

σf # !rS2∕d:o:f "1∕2 × 100%; (25)

FG APDM

L
Laser VOA

SMF

PC
Interface

Fig. 1. Schematic of the experimental setup for the afterpulsing char-
acterization. VOA: variable optical attenuator; L: aspheric lens; SMF:
single mode fiber; FG: function generator, APDM: APD module.

Table 1. Operation Parameters

Parameter Value(s)

μν!×10−2" S1:{0, 0.20, 0.72, 6.6, 14, 32, 67, 138, 299}
S2:{0, 0.20, 0.72, 5.5, 11.6, 25, 56, 107, 258}

F i!MHz" 0.4 to 7.6, steps of 0.4

150
160

170 400
600

8000

10

20

30

40

50

60

τ,  ns
Q, ns

IS

10

20

30

40

50

Fig. 2. IS function is used in order to obtain values for Q and τ.
This example is related to results of Fig. 3.
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where d:o:f : # N 2 × N 1 − 2K − N 2. The number of different
measurements is N 2 × N 1, and there are 2K afterpulsing
parameters fQk; τkg and N 2 seed probabilities fPs;νg.

The uncertainties in the estimation of the fitting parameters
and their confidence intervals are obtained by analyzing the S2r
function, and using the first-order Taylor expansion of P!∞"

c in
the fitting parameters, as explained Appendix B.

6. RESULTS
A. Nominal Efficiency η # 0.20
The experimental data (black circles) and the corresponding
fitting curves (solid blue lines) are presented in Fig. 3; note
that the circle radius indicates the seed probability, with a larger
radius corresponding to a larger probability. Through the opti-
mization of the IS function over the !Q; τ" plane (see Fig. 2),
we have found that there is a region where these parameters
yield a good fit with the calibration experimental runs; note
that in this case there is a significant correlation between the
Q and τ parameters. We use the maximum value of the IS func-
tion to find the best-fit parameters. The optimization for each
seed probability (Ps;ν # Ps!μν") was performed separately on
the corresponding curve.

The fitting parameters, dark-count probabilities, and after-
pulsing parameters, are presented in Table 2. Their respective
t-test values (mean divided by standard deviation) to be com-
pared with the threshold value tc # 2.85 for the t-student
distribution with 160 degrees of freedom and a confidence level

of 99.5% is shown in the last column. Note that all parameters
exhibit a t-test value which comfortably fulfills the condition
t > tc .

The effective APDM efficiency ηr is obtained from the pho-
todetection probabilities and their respective previously deter-
mined flux values for each curve (see Table 1). Once Ps;ν is
determined, using Eqs. (5) and (7), we obtain Pph;ν. The mean
efficiency for set S1 is ηr # 0.169% 0.010, to be compared
with the nominal efficiency selected in the APD, i.e., η # 0.20.

Substituting the parameter values shown in Table 2 in
Eq. (7), the fitting curves (blue solid lines) are compared with
the measured detection probabilities (black circles) shown in
Fig. 3, plotted as a function of the gating frequency F. As
the photon flux range covers four orders of magnitude, the scale
employed for the detection probability Pc is logarithmic;
note the remarkable agreement between the model and the
experimental results. To asses in more detail the quality of
the theoretical description, the relative deviation between each
experimental data point and its modeled value is presented in
Fig. 4 (blue dot/solid-line); note that the dot size as in Fig. 3
indicates the seed probability, with a larger dot corresponding
to a larger probability. We have also included the mean con-
fidence intervals (over the ν index) for each frequency (green
dashed line). The quality of the fit is in all cases excellent, with
deviations of 4% at the most, and with a low value of the fitting
error σf # 1.86% [see Eq. (25)].

We have performed the F -test for each curve with 19 con-
figurations and 3 fitting parameters each. The critical value for
a 99.5% confidence level is F c # 7.51. The F -test values
for each curve are 22.3, 80.0, 231, 1.31 × 104, 306, 296,
137, 37.9, 38.7. Clearly all of these values pass the test !> Fc"
comfortably.

B. Nominal Efficiency η # 0.25
We have carried out our APDM characterization for a nominal
efficiency of η # 0.25, in addition to the efficiency of η # 0.20
presented above. In this case, we have used the second set of
seed probability values S2, with a nominal gate temporal width
of tw # 2.5 ns; our results are presented in Fig. 5(a). As in the

0 2 4 6 8
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10−2

10−1

100

 P
c

 F, MHz

Fig. 3. Experimental data (black circles) and fitting curves (blue
solid lines). Settings: η # 0.20 and tw # 2.5 ns. Set: S1.

Table 2. Fitting Parametersa

Parameter Values t-test (t > 2.85)

Pdc !1.144% 0.072" × 10−4 15.8
Q !157.6% 1.0" ns 150.5
τ !637.8% 25.8" ns 24.7
ηr 0.169% 0.010 16.9
σf 1.86%

atw # 2.5 ns η # 0.20. Set: S1.
Fig. 4. Relative deviations (blue dot and solid lines) and confidence
intervals (green dashed lines), corresponding to the results of Fig. 3.
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previous case, in the logarithmic scale the fit is excellent for all
the photon flux values. At this efficiency, high gate frequencies
(above 6 MHz) approach saturation, making it challenging, but
still possible, to distinguish different seed probabilities [see
Fig. 5(b)]. The fitting parameters are presented in Table 3.

The relative deviations between the experimental data and
the curves derived from the model, using the best-fit parame-
ters, are shown in Fig. 6 (top). The F -test for the various curves
leads to the following values: 21.7, 25.2, 37.4, 163, 103, 74.0,
86.8, 70.5, 37.6. All of these values pass the test !> Fc" com-
fortably, with F c # 7.51.

At higher gate frequencies and lower incident fluxes, the
deviations are larger than 5%, leading the model to overesti-
mate the corresponding experimental measurements; we refer
to this as a sub-counting effect. A phenomenological model of
the de-trapping time parameter can be constructed to correct
for the sub-counting effect, as presented in Appendix C, and
employed to improve the fit, as shown in Fig. 6 (bottom). The
F-test parameter for these curves has the following values, with
19 configurations and 6 fitting parameters (F c # 5.79): 525,
333, 601, 7.75 × 103, 5.08 × 103, 2.40 × 103, 1.34 × 103,
618, 166; clearly, explicitly incorporating the sub-counting
effect leads to a major improvement in the quality of the fits.
To rule out that this sub-counting effect is a property of
one specific detector, we have verified that it occurs in three

different APD modules of the same model (id201 from
idQuantique[7]).

C. Signal-to-Noise Ratio
We estimate the total noise probability with the expression

Pn;iν # 1 − !1 − Pdc"
Y∞

j#1

!1 − P!e"
c;iνP

!j"
af "; (26)

which is estimated by adding the dark-count probability to the
total afterpulsing contribution. Once the afterpulsing parame-
ters are determined, the probability of detecting dark counts
Pdc is obtained from the seed probability with mean photon
flux μ # 0 (so that only dark counts can act as seed); this
corresponds to the lowest curves in Figs. 3 and 5.

As can be observed in Figs. 3 and 5, for each mean photon
flux the detection probability Pc exhibits a smooth dependence
on the gate frequency F, which is well reproduced by the
model. Considering that afterpulsing noise is not random, but
strongly correlated in time with any previous signals, the after-
pulsing noise can essentially map the intensity optical signal
distribution to a similar afterpulsing noise distribution. This
in fact makes afterpulsing a particularly difficult source of noise
to deal with in practice, since at first sight it can easily be
mistaken for genuine signal. This implies the need for an algo-
rithm such as the one presented in this paper for the correct
estimation of the fraction of counts which can be attributed
to genuine detection events.

Combining the expressions for the probability of detection
Pc , Eq. (7), the seed probability Ps, Eq. (5), and the noise prob-
ability Pn, Eq. (26), the photodetection probability can be
expressed as

Pph # 1 −
1 − Pc

1 − Pn
: (27)

Table 3. Fitting Parametersa

Without Correction

Parameter Values t-test (t > 2.85)

Pdc !1.706% 0.459" × 10−4 3.7
Q1 !230.0% 2.2" ns 106.9
τ1 !464.7% 17.6" ns 26.4
ηr 0.199% 0.017 11.7
σf 3.12%

atw # 2.5 ns η # 0.25. Set: S2.
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Fig. 5. (a) Experimental data (black circles), fit with correction (blue
solid lines) and fit without correction (green dashed lines). Settings:
tw # 2.5 ns and η # 0.25 Set: S2. (b) Close up of panel a, for large
gating frequencies. Fig. 6. Deviations (blue dot and solid lines) and confidence intervals

(green dashed lines) corresponding to Fig. 5. Upper graph: experimen-
tal data versus model without sub-counting effect. Bottom graph: ex-
perimental data versus model with sub-counting effect.
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For each photon flux value μν, there are N 1 different gate
frequencies F i, with measured detection probabilities P!e"

c;iν, as-
sociated with the same photodetection probability Pph;ν. To
take into account the fluctuations of the measured values along
the fitted curve, we estimate the photodetection probability as
an average over all the frequencies along the same curve:

Pph;ν # 1 −
1

N 1

XN 1

i#1

1 − P!e"
c;iν

1 − Pn;iν
: (28)

In order to calculate the product in Eq. (26), we have in
practice restricted the number factors in such a manner that
we include only factors j which fulfil P!e"

c P!j"
af ≥ ε;, with

ε # 10−10.
Employing the values obtained for the photodetection

probability, Eq. (28), and the noise probability, Eq. (26), we
evaluate the signal-to-noise ratio (SNR) as

SNRiν #
Pph;ν

Pn;iν
: (29)

Figure 7 shows the logarithm base 10 of the SNR. In the
regions of low photodetection probability and high gate
frequency, the SNR is very small, with afterpulsing noise
dominating over photodetections by more than two orders
of magnitude.

D. Comparing Models
In what follows, we compare our own model, to be referred to
as Model 1, with other existing models. Most afterpulsing mod-
els in the literature are able to describe the afterpulsing prob-
ability in situations where it is smaller than the photodetection
probability. Model 2 (Ref. [49]) does not incorporate cumula-
tive afterpulsing and is used in time-series analysis; our meth-
odology of Section 4 reduces to Model 2 if the cumulative effect
is disregarded. Model 3 (Ref. [56]) includes cumulative effects,
but is unable to describe the saturation due to afterpulsing.

In Fig. 8, we present a comparison of our own model
(Model 1) with Models 2 and 3, for three different sets of mea-
sured probabilities, selected from Fig. 3. For Models 2 and 3,
the best-fitting parameters allow for a very good description of
configurations with gating frequencies up to 4 MHz. In their
respective frequency ranges, the three models converge to

statistically the same seed-probabilities. This is the case for
small gate frequencies, for which the afterpulsing probability
is smaller than photodetection probability. When the gate
frequency exceeds 4 MHz, these three models make different
predictions, with Model 1 clearly showing a much better agree-
ment with our experimental data over the full operation
bandwidth, as compared to Models 2 and 3. Model 2 has
the optimal afterpulsing parameters Q # !209.8% 4.5"ns and
τ # !372% 20"ns; and for Model 3 the afterpulsing parame-
ters are Q # !173.3% 1.9"ns and τ # !459.3% 39.5"ns.

E. Results with Dead-time
The afterpulsing behavior with dead-time in the APDM can
be evaluated with the same setup as described in Fig. 1, by
selecting a dead-time of Δt in the APDM settings. Imposing
a dead-time after each detection event in the APDM reduces
the afterpulsing contribution, at the expense of a reduction of
the maximum count rate. As we can observe in Fig. 9, there is a
remanent afterpulsing contribution, which at the highest gating
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Fig. 7. Signal-to-noise ratio in logarithmic scale, derived from Fig. 3
after applying our noise discrimination algorithm.
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Fig. 8. Comparison between experimental data (black circles) and
afterpulsing models: Model 1 (solid blue line), Model 2 (red dashed
line), and Model 3 (green dash-dot line), for three different seed prob-
abilities.
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Fig. 9. Detection probabilities versus gate frequency, with dead-
time. Experimental data (black circles), fit (solid blue line).
Settings: tw # 2.5 ns, η # 0.20 and Δt # 10 μs
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frequencies represents around 20% of the total signal. The fit-
ting is performed using the model described in Section 4 with
cumulative afterpulsing.

The afterpulsing parameter values obtained with this meth-
odology are Q # !38.57% 1.10"ns and τ # !201% 185"μs.
The τ parameter exhibits a large dispersion, which means that
the remaining ensemble of carrier-traps has a wide energy dis-
tribution. Using the efficiency and dark-count probability of
Table 2, we obtain μ # !2.19% 0.13" × 10−3 photons per
gate. This configuration is less sensitive to afterpulsing contri-
butions of carrier-traps with small de-trapping times; they
essentially do not contribute to the mean values of the SEDF
parameters.

7. APPLICATION EXAMPLE

As a proof-of-principle demonstration of this methodology, we
have analyzed signals from a photon-pair source based on the
spontaneous parametric down-conversion (SPDC) process, in a
type-I configuration. We have chosen the operation settings
of the APDM as: gating frequency F # 6.0 MHz, nominal
gate temporal width tw # 2.5 ns, and nominal detection effi-
ciency η # 0.20. In this particular example, the afterpulsing
probability is greater than the photodetection probability,
and there is no observable sub-counting effect. This means that
we can use the SEDF model without sub-counting correction
in the BBM.

A. Data Acquisition for the SPDC Photon-pair Source
Without Dead-time
The SPDC photon-pair source used is shown in Fig. 10. A
β-barium borate (β-BBO) crystal (X ) is pumped by a femto-
second Ti-sapphire laser beam, centered at 775 nm so as to
produce frequency-degenerate telecommunications-band pho-
ton pairs (at 1550 nm). The laser output is spatially filtered so
that the pump beam can be described to good approximation as
a Gaussian beam. Under these conditions, the SPDC light ex-
hibits the well-known type-I annular spatial distribution.

In order to suppress the pump, the signal and idler photon
pairs are transmitted through a low-pass filter (F 1) transmitting
wavelengths λ > 980 nm; and through a 1550% 5 nm band-
pass filter (F 2). A lens (L), with focal length f # 10 cm, placed
at a distance f from the crystal, defines a Fourier plane at a

further distance f from the lens. The full SPDC transverse
spatial intensity distribution was recorded by means of a fiber
tip which scans the Fourier plane with the help of a two-
dimensional precision motor, leading to the APDM [65].
The electronic signal used as external trigger for the APDM
(which defines the gating frequency) was obtained as follows:
(i) we employed the electronic pulse train produced by a fast
photodiode sensing a portion of the laser beam, and (ii) we used
a pre-scaler/delay circuit (DG: DG645—Stanford Research
Systems) which selects one out of every 15 electronic pulses
so as to reduce the (electronic rather than optical) repetition
rate from 90 MHz to 6 MHz. At this gating frequency, the
APDM exhibits a considerable afterpulsing contribution
(which in fact exceeds the optical signal). Since the internal
delay circuit of the APDM settings is bypassed [7], the internal
delay is fixed, allowing APDM operation using its full
bandwidth. Therefore, the pre-scaler/delay circuit permits
the synchronization of the SPDC optical signals with the
APD gates.

In our experiment, we collected 10 samples of spatially
resolved counts taken over a matrix of transverse positions
defined by a 2.2 cm × 2.2 cm window with 0.2 cm steps.
The experimental detection probabilities P!e"

c are obtained
using Eq. (23).

B. Complete Noise Discrimination Results
One of the key results of this paper is Eq. (7), which is rather
convenient in order to perform the noise discrimination (sub-
traction), once we have fully characterized the afterpulsing
and dark noise contributions (see Section 5). This permits
the extraction of the optical detection probability Pph from
the raw total detection probability P!∞"

c , which is replaced with
P!e"
c in Eq. (7),

Pph # 1 −
!1 − P!e"

c "
!1 − Pdc"∐∞

j#1!1 − P
!e"
c P!j"

af "
; (30)

which is a very simple and powerful analytic expression. With
its help, we extract the genuine photodetection signals, i.e., re-
moving noise contributions from the overall measured detector
output.

The initial task is to calculate the APC, using the afterpuls-
ing and dark noise parameters of Table 2, together with the
gating frequency of 6.0 MHz. In order to calculate the product
in Eq. (30), we have in practice restricted the number of factors
in such a manner that we include all factors j such that
P!e"
c P!j"

af ≥ ε, with ε # 10−10.
Substituting the parameter values shown in Table 2 in

Eq. (30), we can separate the photodetection probability Pph

from all noise contributions, including afterpulsing and dark
noise. We depict in Fig. 11 an illustration of this process, where
the number of counts (Nx) is given by the respective probabil-
ity Px multiplied by the gating frequency F. In this plot the
subindex x # c denotes total counts, x # ph denotes photo-
detection counts, and x # n denotes noise counts. Inside
the dashed square in Fig. 11, we show the SNR distribution
corresponding to the SPDC ring, using Eq. (29).

Fig. 10. Schematic setup for SPDC process characterization. BS:
beamsplitter; FPD: fast photodiode; DG: delay generator; APDM:
APD module; SMF: single mode fiber; L: lens; cL: fiber-coupling lens;
xy-Lxy-scanning fiber-coupling lens; F 1 low-pass filter; F 2 band-pass
filter; X β-BBO crystal.
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8. CONCLUSIONS

We have presented a noise discrimination methodology for
avalanche photodiode modules (APDM) operated in gated
mode, designed to quantify the relative weights of the optical,
dark-count, and afterpulsing contributions to the total number
of detection events. This methodology, which is simple and
robust, is applicable to the operation of APDMs without, as
well as with, dead-time (Sections 3 and Section 4, respectively).
Our methodology is furthermore comparatively less resource-
intensive than other noise discrimination techniques and
permits the estimation of both dark-count and afterpulsing
noise components over the entire operation bandwidth. In
our approach we can estimate the full set of APDM parameters,

including detection efficiency, using a simple calibration exper-
imental procedure.

Our method allows us to reliably operate an APDM and
extract the actual optical signal at all gating frequencies allowed,
and with any detection efficiency setting, as long as the detector
does not fully saturate. The application of our method renders
commercial APDMs considerably more noise tolerant and per-
mits the extraction of the actual optical signal from the total
counts even in situations when afterpulsing noise dominates.

Our paper also contributes to a greater understanding of the
physics behind afterpulsing. In contrast to dark-count noise,
which is random, the afterpulsing noise essentially maps the
spatial or temporal optical signal distribution to a similar after-
pulsing noise distribution. We have demonstrated the use
of our methodology in the context of an experiment for the
determination of the spatial transverse count distribution of a
spontaneous parametric down-conversion photon-pair source.
The ability to correctly identify the fraction of counts due to
genuine photodetection, as made possible by our method,
implies that the experimenter can take advantage of the greater
genuine signal which results from larger gating frequencies
and detector efficiencies, unhampered by the adverse effects
of afterpulsing.

APPENDIX A: CONVERGENCE LIMIT OF APC

In this appendix we discuss the convergence of P!n"
c [see Eq. (6)]

to the value P!∞"
c . We expect P!n"

c to converge to a certain value
because the afterpulsing contribution from past detection
events decreases with the time interval since their occurrence.

In our calculations, we use as a cut-off for the infinite prod-
uct in Eq. (6) conserving factors such that P!n−j"

c P!j"
af ≥ ε,

with ε # 10−10.

Fig. 11. Filtering results: using the BBM, photodetection counts N ph are discriminated from noise counts Nn, when the total counts are mea-
sured N c . The SNR distribution (on XY plane) is presented inside the dashed square. Settings: η # 0.20, tw # 2.5 ns, F # 6.0 MHz.

Fig. 12. Convergence of P!n"
c using FBM.
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The convergence behavior of P!n"
c is illustrated in Fig. 12 for

the specific case of a flux of μ # 0.14 photons per gate, with
the following choice of parameters: detection nominal effi-
ciency η # 0.20, nominal gate temporal width tw # 2.5 ns,
and gating frequency F # 5.2 MHz.

Let us now analyze the convergence of the APC product,
in Eq. (7). To that end, let us consider the logarithm of the
APC, W ,

W # ln!
Y∞

j#1

!1 − P!∞"
c P!j"

af "" #
X∞

j#1

ln!1 − P!∞"
c P!j"

af ": (A1)

Note that because P!∞"
c ≤ 1, P!j"

af ≤ 1, and P!j$1"
af < P!j"

af ,
the ratio between two consecutive terms in Eq. (A1) is less than
unity (in particular, as j → ∞), i.e.,

lim
j→∞

ln!1 − P!∞"
c P!j$1"

af "

ln!1 − P!∞"
c P!j"

af "
< 1: (A2)

This guarantees that W converges, and that the APC prod-
uct converges as well.

APPENDIX B: ERROR PARAMETER ESTIMATION

In this appendix, we show how to estimate the fitting parameter
errors. We regard P!∞"

c as a multi-dimensional function. We
define a multi-dimensional vector of parameters

r ≡ !fPS;νg; fQkg; fτkg; & & &"; (B1)

and we can write the first-order Taylor expansion of the click
probability as

P!∞"
c !r" # P!∞"

c !r0" $ ∇rP
!∞"
c !r0" · Δr: (B2)

Inserting Eq. (B2) in the definition of S2r , the inverse of IS in
Eq. (24), we obtain

S2r #
XN 2

ν#1

XN 1

i#1

!
P!e"
c;iν − P

!∞"
c;iν !r0" − ∇rP

!∞"
c;iν !r0" · Δr

P!e"
c;iν

"2

: (B3)

In order to simplify the notation, we rewrite the last equa-
tion as

S2r #
XN 2

ν#1

XN 1

i#1

XU

u#1

XU

v#1

!yiν − X iν
u βu"!yiν − X v

iνβv"; (B4)

where we have use the following notation,

y # yiν #
P!e"
c;iν − P

!∞"
c;iν !r0"

P!e"
c;iν

; (B5)

X # X iνs #
∂r;sP

!∞"
c;iν !r0"
P!e"
c;iν

; (B6)

β # βs # Δrs; (B7)

with s # fu; vg. Using the least squares methodology with ma-
trix notation, we obtain

C # Cv
u #

$XN 2

ν#1

XN 1

i#1

X iν
u X v

iν

%−1
; (B8)

which is used to find the solution,

βs #
XU

v#1

Cv
s

$XN 2

ν#1

XN 1

i#1

X iν
v yiν

%
: (B9)

We can estimate by iteration the solution as follows,

r!k$1";s # r!k";s!1$ βs": (B10)

Also, Eq. (B8) is used to evaluate the relative error in the
parameters,

δβs # σf
ffiffiffiffiffi
Cs

s
p

; (B11)

where Cs
s is the diagonal of Cv

u.
For each parameter in r, we calculate its propagation error as

δrs # rsδβs : (B12)

The average confidence interval in the frequency domain is
expressed as

G # Giν #
XU

u#1

X iν
u Cu

uX u
iν; (B13)

which gives

δyiν # σf !1$
ffiffiffiffiffiffiffi
Giν

p
": (B14)

APPENDIX C: SUB-COUNTING EFFECT

We have observed that there is a region of gating frequencies for
which our model overestimates the observed click probability.
This effect, which we refer to as sub-counting, is apparent
for small seed probabilities, while it becomes negligible for a
sufficiently large seed probability. The relative deviations be-
tween experimental data and the fitted functions are depicted
in Fig. 6 (top), where the sub-counting effect can be appreci-
ated. In order to model this sub-counting dependence, we pro-
pose a Gaussian function dependence for the de-trapping time
parameter,

τk # τuk $ αk!1 − P
!e"
c " exp

!
−
!f − f a;k"2

2f 2
b;k

"
; (C1)

where f a;k is the centroid of the Gaussian, f b;k is the standard
deviation, and αk is the time amplitude correction. There is also
a phenomenological dependence on the experimental click
probability.

Using Eq. (C1), the relative deviation between experimental
points and fitted data is reduced, as can be seen in Fig. 6 (bot-
tom). This leads to a better description of the afterpulsing

Table 4. Fitting Parametersa

With Correction

Parameter Values t-test (t > 2.85)

Pdc !1.730% 0.080" × 10−4 21.8
Q !250.3% 1.7" ns 150.6
τu !401.5% 7.2" ns 55.5
α !293.6% 28.9" ns 10.2
f a !7.188% 0.275" MHz 26.2
f b !1.230% 0.158" MHz 7.8
ηr 0.198% 0.017 11.6
σf 1.62%

atw # 2.5 ns η # 0.25. Set: S2.
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behavior under more general conditions. The fitting results
are presented in Table 4; in this case, the threshold level for
the t-student distribution is tc # 2.85 with d:o:f : # 157 and
confidence level of 99.5%. Also, the fitting error σf is reduced
from 3.12% without correction to 1.62% with correction.

This sub-counting effect is also observed for set S1 with a
detection efficiency of η # 0.20 for small seed probabilities
(see Fig. 4), in a range of frequencies shifted to larger values
as compared to S2 (see Fig. 6).
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