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In this paper, we revisit the well-known Hong–Ou–Mandel (HOM) effect in which two photons, which meet at a
beamsplitter, can interfere destructively, leading to null in coincidence counts. In a standard HOMmeasurement,
the coincidence counts across the two output ports of the beamsplitter are monitored as the temporal delay be-
tween the two photons prior to the beamsplitter is varied, resulting in the well-known HOM dip. We show, both
theoretically and experimentally, that by leaving the delay fixed at a particular value while relying on spectrally
resolved coincidence photon counting, we can reconstruct the HOM dip, which would have been obtained
through a standard delay-scanning, non-spectrally resolved HOM measurement. We show that our numerical
reconstruction procedure exhibits a novel dispersion cancellation effect, to all orders. We discuss how our present
work can lead to a drastic reduction in the time required to acquire a HOM interferogram, and specifically discuss
how this could be of particular importance for the implementation of efficient quantum-optical coherence tomog-
raphy devices. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.388693

1. INTRODUCTION

The present work lies at the crossroads of experimental quantum
optics and biomedical applications. Advances in quantum tech-
nologies have made possible an exciting breadth of applications
in fields such as communications [1], imaging [2], and compu-
tation [3]. In this work, we aim to explore the application of
quantum-optical effects in the field of biomedicine by studying
the well-known Hong–Ou–Mandel (HOM) interference effect
in an interesting new light. This effect, through which two pho-
tons that meet at a beamsplitter can exhibit quantum interfer-
ence, represents a hallmark of quantum optics. First
demonstrated by Hong et al. [4], it relies on the destructive in-
terference that occurs between the reflected–reflected (RR) and
transmitted–transmitted (TT) alternatives if these are indistin-
guishable, leading to null in coincidence counts across the
two beamsplitter outputs. It is a remarkable effect that is funda-
mentally based on the quantum-mechanical nature of the inter-
fering states of light. Recently, HOM interference has been
realized using different platforms, including silicon photonics in-
tegrated circuits [5] and frequency-domain interferometers [6].

In a typical HOM experiment, the signal and idler photons
in a given pair produced by the spontaneous parametric down-

conversion (SPDC) process reach the two input ports of a
beamsplitter with a controllable temporal delay between them.
While for sufficiently large delays, the TT and RR alternatives
become distinguishable, and the quantum interference is thus
inhibited, at zero delay, the well-known suppression of coinci-
dence counts occurs. The resulting coincidences versus delay
curve, which we refer to in this paper as the HOM interfero-
gram, then exhibits a characteristic dip centered at zero delay.
The dip characteristics can reveal useful information about the
quantum state of the interfering photon pairs. If both interfer-
ing photons emanate from a single SPDC source, on the one
hand, the observed dip visibility quantifies the degree of sym-
metry in the photon-pair state upon interchanging the roles of
the signal and idler photons. On the other hand, the shape of
the dip, as is to be described below, substantially corresponds
to the Fourier transform of the photon-pair joint spectral am-
plitude so that the dip width is inversely proportional to the
SPDC bandwidth [4]. Therefore, HOM interferometry can
be used for photon-pair characterization.

An interesting direct consequence of the destructive inter-
ference between the TT and RR alternatives is that the quan-
tum state emanating from the two output ports α and β of the
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beamsplitter exhibits path entanglement, in particular repre-
senting the NOON state 2−1∕2�j2iαj0iβ � j0iαj2iβ� [7].
Such states are attractive because they show the quantum-
conferred phase super-resolution effect [8]. Another interesting
property of HOM interference is that if the SPDC source used
is based on a continuous-wave (CW) pump, the HOM visibil-
ity is insensitive to even-order dispersion experienced by one or
both photons prior to reaching the beamsplitter [9,10]. This
remarkable property led to the proposal of a quantum version
of optical coherence tomography (OCT) [11], which is based
on a HOM interferometer except that one of the SPDC pho-
tons is reflected from a sample under study before reaching the
beamsplitter [12]. Under appropriate conditions, a distinct
HOM dip can appear for each interface within the sample, thus
yielding useful morphological information about such a sam-
ple. Interestingly, because the resolution depends on the
HOM dip width, this scheme benefits from the dispersion can-
cellation effect mentioned above: the instrument’s resolution is
not affected by even-order dispersion in the sample. In addi-
tion, it has been shown that this quantum OCT (QOCT)
scheme leads to a quantum-conferred factor of 2 enhancement
in resolution as compared to an equivalent classical system with
the same bandwidth [13].

Current advances in photodetection technologies and the
development of highly efficient SPDC sources have revived
the interest in developing efficient QOCT systems [14–16].
A Michelson version of QOCT has been shown to represent
a functional and robust configuration, which can benefit from
the incorporation of novel photon-number-resolving detectors
[17], and is amenable to miniaturization [18,19]. A recent full-
field QOCT implementation has been demonstrated by our
group using an intensified CCD camera [20]. This method,
akin to full-field OCT, reduces considerably the time required
for probing a three-dimensional object by eliminating the need
for raster scanning the transverse section of the sample. We
have developed a fiber-based QOCT system that incorporates
spectrally engineered photon pairs in the telecom band. In par-
ticular, we have demonstrated interesting interference effects
that depend on the type of frequency entanglement [21]. In
terms of axial resolution, beyond the quantum-
conferred improvement factor of 2, it is possible to incorporate
spectral engineering in the form of chirped, aperiodically poled
nonlinear crystals to obtain submicrometer resolutions [22,23];
alternatively, a Fisher information analysis can result in attosec-
ond resolutions [24]. Moreover, it is worth mentioning that
another optical sectioning technique employing nonclassical
light has recently been demonstrated, called induced coherence
tomography [25], which relies on the concept of induced co-
herence between two downconverters to infer the internal
structure of the sample [26,27].

While in a typical HOM experiment, the signal and idler
photon pairs are detected in a non-spectrally resolved manner,
in the present work, we explore the benefits of lifting this re-
striction and permitting spectrally resolved coincidence photon
counting of the optical modes corresponding to the beam-
splitter output ports. Other groups have carried out related ex-
periments in which the joint spectral intensity of the output
quantum state is analyzed as the delay is varied [28–30]. In this

paper, we show both theoretically and experimentally that leav-
ing the delay fixed while enabling spectrally resolved coinci-
dence counting, it becomes possible to recover the HOM
interferogram, which would have been obtained through a stan-
dard delay-scanning, non-spectrally resolved HOM measure-
ment. We show that this technique permits the recovery of
information about the two-photon state with dispersion cancel-
lation to all orders. Importantly, we show that from a single
delay value larger than the dip half-width, we are able to extract
the HOM dip with the same background level of counts as
obtained in the standard measurement based on a sufficiently
large number of delay stops for the adequate sampling of the
dip structure. The importance of this is that the time required
to obtain the HOM interferogram can be drastically reduced.
As we discuss below, this fixed-delay HOM scheme can be par-
ticularly useful in the context of QOCT, for which the standard
delay-scanning approach leads to the need for long acquisition
times, which is impractical for real-life conditions, e.g., clinical
settings. We hope that this work will pave the way towards the
deployment of QOCT as a practical technology.

2. THEORY

The two-photon state produced by SPDC for an incident un-
depleted CW pump may be written as [31]

jψi � j0isj0ii � η

Z
∞

−∞
dΩf �Ω�jω0 � Ωisjω0 − Ωii, (1)

where ω0 � ωp∕2 is the degenerate SPDC frequency, in terms
of the pump frequency ωp, assumed to exhibit a negligible fre-
quency spread, with the pump spectral amplitude modeled as a
delta function δ�ω − ωp�. We also assume a low parametric
gain, so that multiple-pair emission may be disregarded.
This state involves the energy-conserving signal ωs � ω0�
Ω∕2 and idler ωi � ω0 − Ω∕2 frequencies, in terms of a fre-
quency non-degeneracy variable Ω � ωs − ωi. Here, η is a con-
stant related to the conversion efficiency and f �Ω� represents
the joint amplitude function given by

f �Ω� � f 0 sinc

�
L
2
Δk�Ω�

�
exp

�
i
L
2
Δk�Ω�

�
Ff �Ω�, (2)

where L is the crystal length, Ff �Ω� describes an interference
filter acting on the signal and idler photons, and Δk �
kp − ks�ωs� − ki�ωi� − 2π∕Λ is the phase-matching function
in terms of the pump kp, signal ks, and idler ki wavenumbers
and the poling period Λ (in the case of a periodically poled
nonlinear crystal). f 0 is a normalization factor, defined so that
the integral of jf �Ω�j2 over all Ω yields unity.

A standard HOM interference experiment involves the sig-
nal and idler photons from an SPDC source being directed into
the two input ports of a beamsplitter. The coincidence count
rate across the two output ports of the beamsplitter is moni-
tored as a function of the signal–idler delay τ introduced prior
to the beamsplitter. The result is the well-known HOM dip,
exhibiting a null in coincidence counts centered at τ � 0 re-
sulting from destructive interference between indistinguishable
RR and TT pathways [4]. We will refer to the background level
of counts as R0 (i.e., the number of coincidences occurring for
jτj ≫ δT , where δT is the dip width). It has been shown that
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the standard HOM interferogram can be expressed in terms of
f �Ω� and τ as follows [4]:

Rc�τ� �
R0

2

Z
∞

−∞
dΩjf �Ω� − f �−Ω�eiΩτj2: (3)

Note that in the above expression, the background level of
counts R0 depends essentially on the flux of the SPDC pho-
ton-pair source. Note also that the frequency integral in
Eq. (3) corresponds to an experimental situation in which
we do not frequency resolve the photons emanating from
the HOM beamsplitter output ports. In this paper, we are in-
terested in studying the effect of spectrally resolving these out-
put photons, which corresponds to removing the mentioned
frequency integral, thus obtaining a frequency-delay (Ω, τ)
dependent and normalized interferogram of the form

rc�τ,Ω� �
1

2
jf �Ω� − f �−Ω�eiΩτj2, (4)

where, evidently, the following relationship between Rc�τ� and
rc�τ,Ω� is obeyed:

Rc�τ� � R0

Z
∞

−∞
dΩrc�τ,Ω�: (5)

It is straightforward to expand Eq. (4) to obtain the expression

rc�τ,Ω� �
1

2
�A�Ω� � B�Ω�e−iΩτ � B��Ω�eiΩτ	, (6)

in terms of a frequency-symmetrized, real-valued joint spectral
intensity A�Ω�, and a complex-valued cross term B�Ω�, i.e.,

A�Ω� � jf �Ω�j2 � jf �−Ω�j2, (7)

B�Ω� � −f �Ω�f ��−Ω�: (8)

Clearly, the function rc�τ,Ω� has a delay-independent contri-
bution characterized by A�Ω�, as well as a delay-dependent
term described by B�Ω�.

In order to illustrate these relationships, we present in Fig. 1
simulations for a specific experimental situation involving a
periodically poled lithium niobate (PPLN) crystal pumped
by a Ti:sapphire laser operating at 775 nm in CW mode with
poling period Λ � 19.1 μm. Figure 1(a) shows a simulation of
the delay-frequency interferogram for this situation, with all
simulation parameters corresponding to the experiment de-
scribed in Section 4 and shown in Fig. 5. As is apparent from
Fig. 1(a), the HOM interferogram exhibits an interesting added
richness when the output modes from the beamsplitter are fre-
quency-resolved. Note that at τ � 0, there is a null in coinci-
dence counts along all Ω values. As the value of jτj increases,
oscillations along Ω appear, with a linearly decreasing period,
proportional to 1∕jτj. The function f �Ω� limits the maximum
spread of the frequency-delay HOM interferogram along the
frequency variable Ω.

As is clear from Eq. (5), integrating this frequency-delay in-
terferogram rc�τ,Ω� over Ω yields the standard HOM inter-
ferogram, as shown for the particular situation of the
previous paragraph in Fig. 1(b). An interesting possibility is
to integrate rc�τ,Ω� over the delay variable τ instead; we have
shown the resulting trace in Fig. 1(c). Physically, this would
represent the effect of averaging over all temporal delays, while

monitoring the coincidence rate versus the frequency variable
Ω. It is interesting that a HOM-like dip also appears versus the
frequency variable, with the interpretation that the frequency-
degenerate pairs (withΩ � 0) lead to indistinguishable RR and
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Fig. 1. (a) Simulation of frequency-delay interferogram rc�τ,Ω�.
(b) Result of integrating the interferogram over Ω, yielding the
HOM interferogram. (c) Result of integrating the interferogram over
τ, yielding a HOM-like dip in the frequency variable Ω. (d) Fourier
transform of (a), so as to yield the time-domain interferogram r̃ c�τ,T �.
(e) Evaluation of r̃ c�τ,T � at T � 0, yielding the HOM interferogram.
(f ) Evaluation of r̃ c�τ,T � at τ � −1 ps. (g) Function A�Ω�.
(h) Function B�Ω�.
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TT pathways with the effect of destructive interference and a
null in coincidence counts. Note that the frequency-delay in-
terferogram of Fig. 1(a) is nearly symmetric in τ and Ω; how-
ever, rc�τ,Ω� is effectively apodized along Ω, reflecting the
limited spectral spread of the photon pairs, governed by f (Ω).
In fact, we have verified that if the photon pairs are modeled
as non-band-limited, the shape of the spectral HOM dip in
Fig. 1(c) becomes identical to the more usual delay-dependent
dip in Fig. 1(b). Although a detailed discussion of the spectral
HOM effect shown in Fig. 1(c) is beyond the scope of this
paper, it may be seen from Fig. 1(a) that: 1) the averaging over
τ means that non-zero delays will contribute to the overall de-
structive interference observed, and 2) for a small bandwidth
centered at Ω � 0, a null in coincidence counts occurs for
all values of τ. It is then clear that for non-zero delays (i.e.,
τ ≠ 0), the two photons in a given pair do not temporally over-
lap in the beamsplitter and, nevertheless, can interfere. In this
context, there is a certain parallel with the work of Pittman et al.
[32], in which a HOM dip is observed for signal and idler pho-
tons that never meet at the beamsplitter.

For the specific case shown in Fig. 1(a), we also show, in
Fig. 1(g), a plot of the function A�Ω�, which by construction
is symmetric in Ω, and in Fig. 1(h) plots of jB�Ω�j and
ΦB � arg�B�Ω�	. These functions will play an important role
below. In order to continue with our discussion, it is helpful to
Fourier transform the interferogram rc�τ,Ω� in the Ω variable,
thus obtaining a 2D time-domain interferogram as follows:

r̃ c�τ,T � � 1

2π

Z
∞

−∞
dΩrc�τ,Ω�eiTΩ, (9)

in terms of T , the Fourier conjugate variable to Ω; note that
because rc�τ,Ω� is a real, even function of Ω, r̃ c�τ,T � is real.
Figure 1(d) shows a plot of the function r̃ c�τ,T � corresponding
to the same situation as in Fig. 1(a). It is interesting to point out
that the standard HOM interferogram Rc�τ� can be obtained
by evaluating the 2D time-domain interferogram at T � 0,
i.e., Rc�τ� � r̃ c�τ, 0�; see Fig. 1(e). Furthermore, it is straight-
forward to show that r̃ c�τ,T � can be expressed in terms of
Ã�T � and B̃�T �, which correspond to the Fourier transform
of the functions A�Ω� and B�Ω�, respectively, as

r̃c�τ,T � � 1

2
�Ã�T � � B̃�T − τ� � B̃�−T − τ�	: (10)

Note that the condition B��Ω� � B�−Ω� [see Eq. (8)] implies
that B̃�T � is real. Note also that the HOM interferogram in any
of its forms, i.e., rc�τ,Ω�, r̃ c�τ,T �, or Rc�τ�, is fully determined
by the two functions A�Ω� and B�Ω�. While a standard HOM
interferogram Rc�τ� is obtained through a non-frequency-
resolved coincidence measurement across the two HOM beam-
splitter output modes as a function of the delay τ, we show
below that from a frequency-resolved HOM interferogram at
a fixed delay, i.e., rc�τ0,Ω� for τ � τ0, we can extract functions
A�Ω� and B�Ω�, and subsequently numerically compute the
HOM interferogram Rc�τ�, which would have been obtained
through a delay-scanning measurement. Importantly, we will
show that frequency-resolved HOM data for a single delay
value τ0, selected to lie outside of the standard HOM dip
so that we have access to the full background level of coinci-
dence counts R0, contains the same information as a standard

delay-based HOMmeasurement, assuming that the acquisition
time per data point is the same in both measurements (a single
point for the frequency-resolved measurement versus a collec-
tion of points for the standard measurement).

Indeed, for a sufficiently large fixed value of the delay jτ0j,
the resulting time-domain interferogram r̃ c�τ0,T � yields three
distinct peaks corresponding to each of the terms in Eq. (10);
see Fig. 1(f ). By sufficiently large, we mean that the fixed-delay
τ0 must be larger than the temporal width of each of the three
peaks, so that these do not overlap—note that because the peak
widths are related to the HOM dip width, this translates into
setting the delay τ0 to lie outside of the dip. It is notable that
from an experimental measurement at a fixed delay τ0, it then
becomes possible to extract functions A�Ω� and B�Ω� through
the following series of steps: 1) select a value of delay τ0 and
experimentally obtain the function rc�τ0,Ω� through a spec-
trally resolved HOM interferometer, 2) numerically compute
Fourier transform, thus obtaining function r̃ c�τ0,T �, 3) nu-
merically filter each of the three peaks in turn, 4) compute
a numerical inverse Fourier transform for each of the three
peaks, and 5) multiply the result by the delay-dependent phases
exp�iτ0Ω�, 1, and exp�−iτ0Ω� (resulting from the Fourier shift
theorem for each of the three peaks, respectively) and complex
conjugate the data from the left-hand-side peak, so as to obtain
the function A�Ω� in the case of the central peak and the func-
tion B�Ω� from any of the two side peaks. In fact, the two side
peaks contain duplicate information, and it is thus only neces-
sary to carry out this procedure for the central peak and one of
the side peaks. However, in order to take advantage of all
coincidence counts R0 (distributed among the three peaks) thus
ensuring the best possible reconstruction for a given level of
counts, it is helpful to estimate function B�Ω� as the sum
of the two side peaks recovered from the procedure above, di-
vided by 2.

The functions A�Ω� and B�Ω� obtained in the manner de-
scribed in the previous paragraph can then be substituted into
Eqs. (6) and (5), so as to numerically compute the standard
HOM interferogram Rc�τ�. Because all R0 coincidence counts
appearing in the standard HOM dip background level are em-
ployed in the Rc�τ� interferogram reconstruction, and because
we utilize Eqs. (6) and (5) (which model the standard HOM
effect) in order to predict the interferogram Rc�τ� at a fixed
delay τ0, the reconstructed and directly obtained interferograms
are in fact expected to be equivalent. It is remarkable that at a
fixed delay τ0 in the background level, i.e., at a delay location
exhibiting a flat dependence on τ and therefore no useful in-
formation, enabling a frequency-resolved HOM measurement
permits the full extraction of the standard HOM dip.

Let us now address the question of how the resolution of the
apparatus used for frequency resolving the photons emanating
from the HOM beamsplitter output ports affects the perfor-
mance of our HOM reconstruction protocol. We know from
the Nyquist sampling theorem that for a band-limited function
(with maximum frequency component φs in its spectrum), a
sampling period bounded by π∕φs is sufficient to fully recon-
struct the function in question. In our case, the function we
wish to determine is rc�Ω, τ0�, and its spectrum is r̃c�T , τ0�.
Therefore, rc�Ω, τ0� will be appropriately sampled by a
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sampling period π∕�jτ0j � δt�, where jτ0j is the location of the
side peak with half-width δt. Disregarding the half-width, i.e.,
jτ0j � δt → jτ0j, and letting δω be the minimum resolvable
frequency interval in our apparatus, we arrive at the conclusion
that our protocol is able to reconstruct the HOM dip for delays
that fulfill

jτj < π

δω
: (11)

Clearly, as the frequency resolution of the apparatus is im-
proved (i.e., as δω is reduced), we are able to reconstruct a
HOM interferogram over a longer stretch of delay values τ.

3. QUANTUM-OPTICAL COHERENCE
TOMOGRAPHY

One of the natural applications for HOM interferometry is
QOCT. A QOCT apparatus is closely based on a HOM inter-
ferometer, except that one of the SPDC photons is reflected
from a sample under study, instead of from a mirror, before
reaching the beamsplitter. As is well known, each interface
in the sample will produce a HOM dip, along with a cross-in-
terference structure (dip or peak) for each pair of surfaces [21].
In principle, it becomes possible to determine the internal mor-
phology of the sample (number and position of interfaces) from
the resulting QOCT interferogram.

Let us consider a hypothetical sample of thickness L and
index of refraction n. The QOCT interferogram will include
a HOM dip corresponding to each of the ends of the sample,
along with additional dips for possible intermediate interfaces.
If the temporal delay for the HOM interferometer is intro-
duced by a displaceable mirror, the two end dips will be sep-
arated by a displacement 2nL of this mirror. Note that the
QOCT resolution is determined by the HOM dip width,
which is, in turn, inversely proportional to the SPDC anti-
diagonal bandwidth. When carrying out an experimental
run, one needs to displace the mirror over the distance 2nL
with sufficiently small steps so as to be able to determine
the location of any possible dips associated with additional in-
terfaces within this range. If the dip width is Δτ, or cΔτ ex-
pressed as the required mirror displacement, and if we
necessitate M points within each dip so as to correctly deter-
mine its position, we need a total number of delay stops N in
the experiment given by

N � 2LnM
cΔτ

: (12)

As an example, a sample of thickness L � 1 mm and index of
refraction n � 1.5, with a HOM dip width of cΔτ � 3 μm
and assuming that M � 3 points per dip are required for
the correct identification of all dips, leads to the need for
3000 delay stops (displaceable mirror positions). Assuming that
the source brightness is large enough so that an acquisition time
of 1 s per point is sufficient, this translates into a total measure-
ment time of 50 min (disregarding the time it takes the motor
to move from one position to the next). This leads us to discuss
one of the essential challenges for the application of QOCT in
practical situations: useful data for an unknown sample often
requires experimental runs of long duration, which may be im-
practical in real-life situations, e.g., in a clinical setting in which

the sample could be a human eye. This also leads us to discuss
one of the key advantages of our protocol for the reconstruction
of a HOM interferogram: for a sufficient frequency resolution
(which as was discussed above determines the maximum delay
jτj that can be recovered in our reconstruction), comparable
data to the standard HOM measurement requiring N delay
stops [see Eq. (12)] can be obtained with a single delay stop
(with the same acquisition time per point). In other words,
the reduction factor in the required time for an experimental
run can be in the thousands, making this technology potentially
much more suitable for real-life situations, including clinical
settings.

While discussing the applicability of our work, evidently,
three-dimensional sample reconstruction is likely to be needed
in most real-life situations. In a recent paper from our group
[20], we have demonstrated full-field QOCT (in which we re-
cover the transverse as well as the axial sample structure) by using
a triggered intensified CCD camera to detect one of the optical
modes following the HOM beamsplitter. It is conceivable to
combine spatially and spectrally resolved single-photon detection
so as to render our present technique full-field capable.

In terms of the application of our current work to QOCT,
let us discuss a two-surface sample, which could be regarded as
the simplest possible sample of interest for proof-of-principle
purposes. In this case, besides the temporal delay τ and the var-
iable T (Fourier conjugate to Ω), there is a third temporal var-
iable of interest, the optical thickness of the sample in temporal
units, T s � 2nL∕c. For simplicity, let us assume that the joint
spectrum f �Ω� is symmetric in the sense that f �−Ω� � f �Ω�,
and let us define a new function F�Ω� � jf �Ω�j2, along with
its Fourier transform F̃ �T �. Note that if the joint spectrum is
not symmetric, it can be rendered symmetric with an appro-
priate bandpass filter. We can then show that the time-domain
interferogram r̃ c�τ,T � can be expressed as

r̃ c�τ,T � � F̃ �T � − 1
2
F̃ �T − τ� � cos�ω0T s�F̃ �T − T s∕2�

− cos�ω0T s�F̃ �T − �τ − T s∕2�	

−
1

2
F̃ �T − �τ − T s�	 −

1

2
F̃ �T � τ�

� cos�ω0T s�F̃ �T � T s∕2�
− cos�ω0T s�F̃ �T � �τ − T s∕2�	

−
1

2
F̃ �T � �τ − T s�	: (13)

In Fig. 2(a) we present a plot of the frequency-delay interfero-
gram rc�τ,Ω� expected for a two-layer sample that consists of a
borosilicate glass coverslip of 170 μm thickness. In Fig. 2(b), we
show the QOCT interferogram obtained by integrating
rc�τ,Ω� over Ω, exhibiting two HOM dips on the sides, each
related to one of the two interfaces, as well as the corresponding
cross-interference intermediate structure in the center. Note
that as is well known, e.g., see Ref. [21], such a cross-
interference intermediate structure will appear in the QOCT
interferogram for each pair of surfaces in the sample. In
Fig. 2(c) we show a plot of the time-domain interferogram
r̃ c�τ,T �, showing for a fixed delay up to nine peaks, as is
expected from Eq. (13).
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Let us note that the placement of these nine peaks is sym-
metric; i.e., there is a central peak, and each peak at T > 0 has a
corresponding identical peak at −T , so that we need only con-
cern ourselves with the central peak along with the four right-
hand-side peaks [which appear on the first two lines of
Eq. (13)]. Note that the first, third, and seventh terms in
the equation are delay-independent, leading to the appearance
of three horizontal stripes in Fig. 2(c) (the central one associ-
ated with the first term and the two lateral ones associated with
the third and seventh terms). The question that we ask our-
selves is how to extract morphological information about the
sample from an experimental measurement of the function
r̃ c�τ,T � at a fixed delay τ � τ0. In order to answer this ques-
tion, we remark that the second and fifth terms in Eq. (13)
correspond to two peaks, centered at τ and at τ − T s, respec-
tively. This implies that the separation between these two peaks
directly yields T s, i.e., the optical thickness of the sample.
However, the existence of other peaks can complicate the cor-
rect identification of those two peaks, which bear useful infor-
mation about the sample. Indeed, a major drawback of QOCT
with SPDC photon pairs produced by a CW pump is the

appearance of an intermediate cross-interference structure
(which can be a peak or dip), for each pair of layers in the
sample.

In this context, let us also note that the third, fourth, sev-
enth, and eighth terms in Eq. (13) are proportional to
cos�ω0T s�. This brings us to refer the reader to an earlier paper
from our group [21] in which we studied QOCT in the context
of such a two-interface sample, in which we allowed the SPDC
pump to be pulsed. In that paper, we show that terms such as
these with the argument of the cosine function proportional to
the pump frequency 2ω0 will tend to average out to zero as the
pump bandwidth is allowed to increase, and can be entirely
suppressed if the pump is in the form of a train of ultrashort
(fs) pulses. Therefore, for a sufficient pump bandwidth, the
peaks associated with the cosine terms are suppressed, leaving
only the central peak and the two peaks from which we can
extract morphological information about the sample. It turns
out that this can be generalized to any number of interfaces:
by using a sufficient pump bandwidth, the function r̃ c�τ,T �
exhibits a central peak in addition to one peak per interface
(appearing on both sides of the central peak), with the separa-
tion between peaks directly yielding the separation between in-
terfaces in the sample. Also, the relative heights of the peaks
directly yield information about the relative weights (deter-
mined by the reflectivities) of the contributions from each
of the interfaces. The downside of using a broadband pump
is that dispersion cancellation (see the end of this section for
a discussion about dispersion cancellation), for the dispersive
phases corresponding to the QOCT sample, no longer occurs.
A possible strategy is to use a pump laser that can be switched
from femtosecond to CW mode, to first identify those peaks
that yield useful morphological information of the sample, and
then switch to the CW mode to obtain data with the benefit of
dispersion cancellation and with full knowledge of which peaks
bear the desired morphological information.

For further illustration of these ideas, let us consider a spe-
cific case involving three interfaces; see Fig. 3. Specifically, we
assume a sample that contains an intermediate interface at 40%
of the total sample thickness of 10 ps in temporal units, as well
as the two extremal interfaces. Figure 3(a) shows a plot of the
function r̃c�τ,T � assuming a CW pump, while Fig. 3(d) shows
the same function resulting from a pump with a δλp � 10 nm
bandwidth. Note that the plot is significantly simplified, with
fewer lines appearing as the pump bandwidth is increased.

Let us now select a fixed delay given by τ0 � −1.7 ps.
Figure 3(b) shows a plot of the resulting function r̃c�τ0,T �
for a CW pump, where we have chosen not to display the peaks
at negative values of T on account of the symmetry in this
function. In this case, there are 10 peaks for the CW pump
case, which are reduced to four peaks for a pulsed pump, a cen-
tral one, and three additional peaks that directly yield morpho-
logical information about the sample.

Note that in the application towards QOCT of our fre-
quency-resolved HOM measurement at a fixed delay τ � τ0,
it is not necessary for the determination of the desired morpho-
logical information to recover the standard delay-scanning
HOM interferogram; i.e., we can directly recover this informa-
tion from the function r̃c�τ0,T � at a fixed delay τ0. However,
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Fig. 2. (a) Frequency-delay interferogram rc�τ,Ω� for two-interface
sample (borosilicate coverslip of 170 μm thickness). (b) Result of in-
tegrating the interferogram over Ω, yielding the HOM interferogram.
(c) Fourier transform of (a) yielding the time-domain interferogram
r̃ c�τ,T �.
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this standard delay-scanning HOM interferogram can be recov-
ered, as we discuss below. We start by rewriting the expression
for the HOM interferogram

Rc�τ� �
R0

2

Z
∞

−∞
dΩjf �Ω�j2jH �Ω� −H �−Ω�eiΩτj2, (14)

assuming that the function f �Ω� is symmetric, i.e.,
f �−Ω� � f �Ω�, for the case in which one of the photons is
reflected from a QOCT sample with a response function
H �Ω� given by

H �Ω� �
XN−1

j�0

r�j�ei�ω0�Ω�T �j�
s � r�0� � r�1�ei�ω0�Ω�T �1�

s �…,

(15)

where r�j� is the reflectivity of the jth interface and T �j�
s is the

time traveled in the round-trip from the zeroth layer to the jth
layer (with T �0�

s chosen to be 0, which corresponds to the po-
sitions of all interfaces measured with respect to the position of
the first interface).

The HOM interferogram can then be recovered by the fol-
lowing steps: 1) setting a fixed delay and experimentally acquir-
ing the function rc�τ0,Ω�; 2) taking a numerical Fourier
transform to obtain r̃c�τ0,T �; 3) if the SPDC pump has a suf-
ficient bandwidth, taking all peaks appearing on the right-hand
side of the central peak and directly obtaining the optical thick-
nesses T �i�

s from the left-most interface to the ith interface from
the separation of the peaks, as well as the weight r�i� corre-
sponding to each interface from the peak heights, thus con-
structing the function H �Ω�; 4) numerically filtering one
peak, e.g., the central peak, and taking an inverse Fourier trans-
form, thus obtaining the function f �Ω�; and 5) numerically
computing the HOM interferogram using Eq. (14). In
Figs. 3(c) and 3(f ) we present the HOM dip recovered using
this procedure for a CW pump and a pulsed (with
Δλp � 10 nm bandwidth) pump. Note that, as expected,
for the pulsed pump case, the cross-interference intermediate
structures can be fully suppressed.

Let us now discuss the question of dispersion cancellation in
HOM interferometry, in QOCT, and particularly in our fre-
quency-resolved QOCT technique. Initially, let us consider a
one-interface sample (i.e., a standard mirror), so that we obtain
a single HOM dip. In contrast to a standard HOM measure-
ment, a frequency-resolved HOM measurement importantly
permits a delay-dependent separation of the three contributions
in Eq. (10), which is the basis of our reconstruction protocol. In
addition, we note that function A�Ω� does not depend on the
phase of the joint spectral function f �Ω� (while the function
B�Ω� is phase-dependent), leading to the important additional
implication that this separation of the three terms permits
the reconstruction of the symmetrized joint spectrum
jf �Ω�j2 � jf �−Ω�j2 without dispersive effects, to all orders.
This constitutes a novel form of dispersion cancellation, en-
abled by the frequency resolution in our technique, which is
an interesting addition to a number of dispersion cancellation
effects already studied [12,13,33–35]. Note that writing the
joint amplitude f �Ω� as jf �Ω�j exp�iϕ�Ω�	, we can in turn
write B�Ω� as −jf �Ω�j2 expfi�ϕ�Ω� − ϕ�−Ω�	g, so that for
any even-order dispersive phase, function B�Ω� becomes
dispersion-insensitive, in addition to function A�Ω�, which
then leads to the well-known even-order dispersion cancellation
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Fig. 3. (a) and (d) Simulation of the temporal-domain interferogram
jr̃ c�τ,T �j for a three-layer sample (intermediate layer at 40% of the
sample thickness, in addition to the two extremal interfaces); in
(a) we show the case of an SPDC source centered at 775 nm with a
narrowband pump (0.1 nm), while in (d) we increase the pump band-
width to 10 nm. (b) and (e) Evaluation of jr̃c�τ,T �j at τ0 � −1.7 ps;
while (b) corresponds to a narrow pump bandwidth (0.1 nm), (e) shows
the effect of increasing the bandwidth to 10 nm. (c) and (f) HOM in-
terferogram resulting for the above two cases; (c) for a narrow pump
bandwidth (0.1 nm) and (f) for a pump bandwidth of 10 nm.
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effect studied previously for HOM interference and
QOCT [9,12].

Note that the phase ϕ�Ω� considered in the previous para-
graph could include an intrinsic contribution from the photon-
pair state as emitted by the crystal, or a contribution stemming
from the propagation of the signal and/or idler photons
through some optical material prior to reaching the beam-
splitter. In order to analyze the effects of dispersion in a
multi-interface QOCT sample, we must consider, for all j, a
dispersive phase term Φj�Ω� associated with the transmission
from the first interface to the jth interface of the QOCT sam-
ple, and back to the first interface following reflection by the jth
interface, in addition to the linear phase �ω0 � Ω�T �j�

s associ-
ated with the time of flight. In this case, the response function
H �Ω� becomes

H �Ω� �
XN−1

j�0

r�j�ei��ω0�Ω�T �j�
s �Φj�Ω�	: (16)

Although a full discussion of dispersion cancellation as related
to higher-order dispersion (quadratic and higher) in the QOCT
sample is beyond the scope of this paper, one can show that if
the joint spectral amplitude is symmetric, i.e., fulfilling
f �Ω� � f �−Ω�, an even-order dispersion cancellation effect
occurs in the sense that if the condition Φj�−Ω� � Φj�Ω� is
fulfilled, the HOM dip corresponding to interface j is insensi-
tive to dispersion. We note that this dispersion cancellation ef-
fect only occurs for a monochromatic SPDC pump. We also
note that, interestingly, this even-order dispersion cancellation
effect does not apply to the cross-interference terms.

4. EXPERIMENT

We have carried out an experiment in order to verify that fre-
quency-resolved detection in a HOM interferometer allows us to
reconstruct the HOM dip without the need for varying the sig-
nal–idler temporal delay. Our experimental setup is depicted in
Fig. 4. Our SPDC source is based on a CW Ti:sapphire laser,
centered at 775 nm, which pumps a PPLN crystal of 1 cm thick-
ness operated at a temperature of 90°C, housed in a crystal oven
with temperature precision of �0.1°C. The poling period

(Λ � 19.1 μm) is selected so as to permit frequency-degenerate,
non-collinear SPDC at this temperature (with a �1.25° propa-
gation angle), thus producing photon pairs centered at 1550 nm.

Both photons in a given pair are coupled into single-mode
fibers, after being transmitted through a bandpass filter cen-
tered at 1550 nm with 40 nm 1/e full-width. In the case of
the signal-photon arm, the fiber leads to one of the ports of
a fiber circulator, so that this photon emanates into free space
from a second port, is collimated with a lens (with 15 mm focal
length), and is reflected from a mirror (sample) for a HOM
(QOCT) interferogram measurement so as to be re-coupled
into the same port of the fiber circulator. The photon sub-
sequently exits the circulator through the third port. In the case
of the idler-photon arm, this photon is sent through a free-
space delay; the photon is out-coupled using a lens with a
f � 15 mm focal length and coupled back into a single-mode
fiber with an identical lens mounted, along with the fiber tip,
on a computer-controlled translation stage (with minimum
step of 200 nm). The two photons then meet at a fiber-based
beamsplitter (BS), with the two BS output ports each leading to
a 5 km spool of single-mode optical fiber, and from there to an
InGaAs free-running avalanche photodiode. Any polarization
mismatch between the signal and idler photons reaching the
BS is suppressed by employing manual polarization controllers
(MPCs) and polarization-maintaining optical fibers. The elec-
tronic pulses produced by the APDs are sent to a Hydraharp
time-to-digital converter so as to monitor, for each coincidence
event, the signal and idler detection times with a 32 ps
resolution.

The signal and idler single-photon wavepackets propagating
through the two fiber spools are temporally stretched since dif-
ferent frequencies travel at different group velocities. With ad-
equate calibration, we are able to convert for each coincidence
event the time of detection difference across the two output
modes from the beamsplitter into a measurement of the fre-
quency detuning variable Ω [21,36]. Collecting data from
multiple events, we build a histogram that corresponds to
an experimental measurement of the joint spectral intensity
for the signal and idler photons emerging from the HOM
beamsplitter output ports. Our experiment involves translating
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TC

SFOven

MPC

MPC

Fiber
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PMC RM

Delay 
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Fig. 4. Experimental setup. Ti:Sa, titanium–sapphire laser; TC, temperature controller; L, plano-convex spherical lens; PPLN, periodically poled
lithium niobate nonlinear crystal; SF, set of bandpass and long-pass filters; MPC, manual fiber polarization controller; PMC, polarization-
maintaining optical circulator; FC, compensating fiber; S, sample; RM, reference mirror; BS, beamsplitter; FSs, fiber spools; TDC, time-to-digital
converter; APD, avalanche photodetectors.
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the free-space delay motor, and obtaining such a histogram at
each delay stop, yielding an experimental measurement of the
function rc�τ,Ω�.

Figure 5(a) shows an experimental measurement, thus ob-
tained of the function rc�τ,Ω� for a single-interface sample in
the form of a standard mirror, with a collection time of 300 s
per delay stop. As may be appreciated, we obtain an excellent
agreement with the corresponding theoretical figure; see
Fig. 1(a). In Fig. 5(b), we show the standard HOM interfero-
gram obtained from the measurement of rc�τ,Ω� by numeri-
cally integrating over the frequency Ω. In Fig. 5(c) we show the
effect of integrating the experimental data for rc�τ,Ω� over the
delay τ, which (as already discussed above) interestingly leads to
a HOM dip-like structure versus frequency instead of delay. In
Fig. 5(d) we show the numerically obtained Fourier transform
of rc�τ,Ω�, i.e., the function r̃ c�τ,T �. Note that the measured
rc�τ,Ω� function is slightly asymmetric due to experimental
imperfections, so that we plot the absolute value of r̃ c�τ,T �.
As may be appreciated, we likewise observe an excellent agree-
ment with the corresponding theoretical figure (see Fig. 1).
While in Fig. 5(e) we show the standard HOM dip obtained

as the function r̃�τ,T � evaluated at T � 0, i.e., r̃�τ, 0�, in
Fig. 5(f ) we show the evaluation of r̃c�τ,T � at τ � −1 ps.

In Fig. 6 we outline the protocol used for the reconstruction
of the HOM interferogram, relying on frequency-resolved
coincidence detection of the HOM beamsplitter output modes,
at a fixed delay τ � τ0. For the same experimental situation cor-
responding to Fig. 5(a), we have selected a fixed delay
τ0 � −1.018 ps, effectively obtaining a vertical “slice” of the plot
in Fig. 5(a). The resulting interferogram rc�τ0,Ω� at this fixed
delay is displayed in Fig. 6(a). In Fig. 6(b) we show the numerical
Fourier transform of rc�τ0,Ω�, i.e., r̃c�τ0,T �, along with two
temporal windows that encompass the central peak (labeled peak
1) and the left-hand peak (labeled peak 2). Figure 6(c) shows
peak 1 filtered out from r̃ c�τ0,T �, while Fig. 6(e) shows the
numerical inverse Fourier transform of this filtered peak, corre-
sponding to our estimation of function A�Ω�. Figure 6(d) shows
peak 2, filtered out from r̃ c�τ0,T �, while Fig. 6(f ) shows the
numerical inverse Fourier transform of this filtered peak multi-
plied by exp�iτΩ�, corresponding to our estimate for the func-
tion B�Ω�; we have shown both the absolute value and the
phase. Note that while from our theory, the function A�Ω� is
expected to be symmetric as already mentioned above, in the
experimental measurement we obtain a slight asymmetry due
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to experimental imperfections, which is also evident in the
HOM dip (see below).

Once we have numerical estimates for the functions A�Ω�
and B�Ω� obtained from our experimental measurement of
rc�τ0,Ω�, we are in a position to recover the HOMdip through
numerical integration of Eq. (6); the result is shown in Fig. 7
(red continuous line). For comparison purposes, we have also
carried out a standard, non-frequency-resolved HOMmeasure-
ment by monitoring the coincidence counts versus delay, with
an acquisition time of 300 s per delay stop. The result of this
measurement is also shown in Fig. 7 (black dots). As is clear, we
obtain an excellent agreement between the recovered HOMdip
obtained through frequency-resolved detection at a fixed delay
and the directly obtained standard HOM dip. Note that the
visibility does not reach 100% because of slight asymmetries
in the joint spectral intensity (see, e.g., Ref. [37]); in our experi-
ment the visibility increases when filtering the photon pairs
with a narrowband pass filter, thus reducing the spectral asym-
metry (cf. Ref. [21]). Furthermore, note that the reconstructed
interferogram exhibits less noise than the directly measured
one. There are two reasons for this. On the one hand our
numerical procedure filters out noise appearing outside of
the chosen temporal windows around peaks 1 and 2. On
the other hand, we speculate that since our technique involves
no moving parts, in contrast to a standard delay-based HOM
measurement, the resulting noise may be somewhat reduced.

In order to illustrate these ideas, as applied to QOCT, we
have repeated the experiment above in such a way that one of
the photons is reflected from a two-interface sample instead of
from a mirror. The sample used is a borosilicate glass coverslip
of 170 μm thickness. In Fig. 8(a), we show an experimental
measurement thus obtained of the function rc�τ,Ω� with an
acquisition time of 100 s per delay stop. In Fig. 8(b), we show
the standard delay-based HOM interferogram obtained as the
numerical integration of the experimentally obtained function
rc�τ,Ω� over Ω. We also show, in Fig. 8(c), the function
r̃ c�τ,T � obtained as the numerical Fourier transform of the ex-
perimental data for function rc�τ,Ω�. Note that all of these
experimental plots exhibit excellent agreement with the corre-
sponding theory plots, shown in Fig. 2.

In Fig. 9 we summarize the reconstruction of i) the morpho-
logical information of the sample and ii) the expected delay-
scanning HOM interferogram, from our frequency-resolved

HOM measurement at a fixed delay. We select a fixed-delay
τ0 � −0.363 ps, effectively obtaining a vertical “slice” of the
plot in Fig. 8(a) corresponding to the function rc�τ0,Ω�, which
has been plotted in Fig. 9(a). In Fig. 9(b) we show the numeri-
cal Fourier transform of the function rc�τ0,Ω�, i.e., thus
obtaining the function r̃c�τ0,T �. This function exhibits the
nine peaks predicted by Eq. (13). While our experiment was
carried out with a CW pump for the SPDC process, and there-
fore we cannot eliminate all peaks with amplitudes proportional
to cos�ω0T s�, we have labeled with red arrows the two terms
[second and fifth in Eq. (13)] that bear morphological infor-
mation about the sample. We can directly obtain the optical
sample thickness T s, as well as the weights r�0� and r�1�, from
the separation and heights of these two peaks. Following the
recipe outlined above for the reconstruction of the HOM
dip, in Fig. 9(c) we show the result of such a reconstruction,
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Fig. 7. Reconstructed HOM dip (red line) and conventional HOM
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coincidence counting (black dots).
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Fig. 8. (a) Experimental measurement of the delay-frequency inter-
ferogram rc�τ,Ω� for a two-layer sample (borosilicate glass coverslip of
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(a), yielding the time-domain interferogram jr̃c�τ,T �j.
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along with a direct, delay-scanning measurement (the latter
with an acquisition time of 100 s per delay stop). Clearly, there
is an excellent agreement between the two measurements.

We note that the original QOCT technique is analogous to
time-domain OCT, which is typically associated with the term
OCT. However, variations on OCT include full-domain OCT
(whose quantum version appears in Ref. [20]), swept-source
OCT [38], and spectral-domain OCT (SD-OCT) [39]. The
latter uses a spectrometer to analyze the resulting interference
pattern as a function of wavelength while the reference arm is
stationary. Thus, we have demonstrated, for the first time to the
best of our knowledge, the quantum version of SD-OCT,
which could be referred to as spectral-domain QOCT. We also
remark that our technique exhibits an interesting connection
with spectral interferometry in ultrafast optics, e.g., the

SPIDER technique for ultrashort pulse characterization, which
involves the use of a long, fixed delay between two pulse rep-
licas, and spectral interference employed so as to recover the
temporal pulse shape [40,41]. We hope that our work will
facilitate the implementation of practical QOCT devices and
inspire quantum-mimetic experiments [42–44].

5. CONCLUSIONS

In this paper, we have studied HOM interferometry from a new
perspective, i.e., by allowing spectral resolution of the single-
photon detectors, which, as we show, permits the recovery
of the HOM dip without the need for varying the delay be-
tween the incoming signal and idler photons. Concretely, we
have shown, both from theoretical and experimental stand-
points, that by setting the delay to a fixed value (greater than
the dip half-width) and by enabling spectrally resolved coinci-
dence photon counting, we can recover the HOM interfero-
gram with the same level of counts that would have been
obtained through a standard, non-spectrally resolved HOM
measurement (involving a sufficient number of delay stops
for adequate sampling of the dip). We have also shown that
our technique allows for the reconstruction of the symmetrized
spectral intensity with full dispersion cancellation, to all orders.

We have presented experimental measurements, along with
simulations, for the spectral-delay HOM interferogram in two
different cases: a single-interface sample (i.e., a plain mirror)
and a two-interface sample. From the data at a single delay
value, for each of these two cases, we have recovered through
the procedure presented here the HOM interferogram and have
compared it with a standard HOM measurement based on de-
lay scanning and non-spectrally resolved coincidence counting,
exhibiting excellent agreement. We have also presented a sim-
ulation concerning a three-layer sample so as to illustrate the
application of our technique for QOCT in the context of a
more general sample. The importance of these results is that
the time required in order to acquire a HOM interferogram
can be drastically reduced since a single delay stop is required.
This is expected to be of particular importance in the context of
QOCT, for which delay scanning results in long acquisition
times, which is impractical in real-life clinical settings.
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