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Progress toward third-order parametric down-conversion in optical fibers
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Optical fibers have been considered an optimal platform for third-order parametric down-conversion since they
can potentially overcome the weak third-order nonlinearity by their long interaction length. Here we present, in
the first part, a theoretical derivation for the conversion rate both in the case of spontaneous generation and in the
presence of a seed beam. Then we review three types of optical fibers and we examine their properties in terms
of conversion efficiency and practical feasibility.
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I. INTRODUCTION

Optical fibers have proved to be extremely efficient plat-
forms for generating nonclassical states [1–4]. While bulk
materials and, more recently, waveguides are also good can-
didates for generating single- or two-photon states, the size
and, more importantly, the length of both is limited techni-
cally. Optical fibers overcome this limitation, the only real
constraints on their length being given by the optical loss and
the homogeneity.

Direct generation of photon triplet states via the cubic
interaction has been a long-standing goal in the field of
quantum optics dating as far back as the 1980s [5–15]. The
interest for this process, known as third-order parametric
down-conversion (TOPDC), is driven by the fact that such an
interaction leads to the direct generation of a non-Gaussian
state [5]. It realizes a three-mode squeezing operator that
differs greatly from the two-mode squeezing operator that
leads to Gaussian squeezed states. Photon triplet states gen-
erated directly through the cubic interaction were observed
only at microwave frequencies [16]. The photon triplet states
generated so far at optical frequencies were mediated by
the second-order susceptibility [17,18]. In the absence of
postselection they do not display any non-Gaussian features.

In this work we estimate the efficiency of TOPDC in
various fibers that have previously been suggested as promis-
ing platforms. Because the expected rates of three-photon
emission are in most cases too small to be observed, we also
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consider the case where TOPDC is seeded at the frequency
of one of the three emitted photons. Seeding dramatically in-
creases the rate of two-photon emission in the two remaining
modes. Although the output state of these modes in this case
is expected to be the same as for the usual two-photon sponta-
neous parametric down-conversion (SPDC) [19], seeding can
be used to study the TOPDC spectral features, similar to the
way stimulated emission tomography (SET) [20] is used to
characterize SPDC.

II. THEORY

For a monochromatic pump, the rate of transitions from
the vacuum state to nondegenerate three-photon state that
occupies modes 1, 2, and 3 is given by the Fermi “golden
rule,”

�i→ f = 2π

h̄2 |〈11, 12, 13|Ĥ |01, 02, 03〉|2δ(�ω), (1)

where 〈11, 12, 13| is the final three-photon state, |01, 02, 03〉
is the initial vacuum state, Ĥ is the Hamiltonian, and �ω =
ωp − ω1 − ω2 − ω3. The subscript 1,2,3 denotes the state with
frequency ω1,2,3 and propagation constant �β1,2,3. Accounting
for the possible transitions to several sets of modes as opposed
to a single discrete three-mode state, we integrate Eq. (1) over
a set of wave-vector intervals. The rate of transitions into this
set of intervals is then

dR = 2π

h̄2

(
Lq

2π

)3

× |〈11, 12, 13|Ĥ |01, 02, 03〉|2δ(�ω) dβ1 dβ2 dβ3, (2)

where Lq is the quantization length. Using the dipole ap-
proximation and the third-order nonlinear response gives the
Hamiltonian [19]

Ĥ = −24ε0χ
(3)
eff

∫
Vint

d3�rE (+)
p E (−)

1 E (−)
2 E (−)

3 + H.c., (3)
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where χ
(3)
eff is the effective cubic susceptibility, Vint is the

volume of the cubic interaction, ε0 is the vacuum permittivity.
The fields E (+)

p , E (−)
1 , E (−)

2 , and E (−)
3 relate to the pump

and modes 1, 2, and 3, respectively, the + (−) denote their
positive (negative) frequency components. Please note that
here we ignore terms for cross and self-phase modulation in
the Hamiltonian and reintroduce them at a later stage as their
effect on the phase matching is well documented [21]. We
describe strong macroscopic fields such as the pump (p) and
later the seed (s) classically,

E (+)
p,s = Ep,sF̃p,s(x, y) eiβp,sz, (4)

while the weak fields in modes 1, 2, 3 we describe using the
quantum field operators

Ê (−)
n = Ẽ∗

n F̃ ∗
n (x, y)â†

n e−iβnz. (5)

Here, z is the propagation direction in the fiber, the subscript
n = p, 1, 2, 3 denotes the field mode with frequency ωn, prop-
agation constant βn, refractive index n(ωn), and group velocity
vg(ωn), â†

n is the photon creation operator. The normalized
transverse field distribution

F̃n(x, y) = Fn(x, y)√∫ |Fn(x, y)|2dx dy
,

where Fn(x, y) is the unnormalized transverse field distribu-
tion [22]. The field amplitudes are given by

Ep,s =
√

Pp,s

2cε0n(ωp,s)
, (6)

Ẽn = i

√
h̄ωnvg(ωn)

2ε0n(ωn)cLq
, (7)

where Pp,s is the power and c is the speed of light.

A. Unseeded TOPDC

Substituting Eqs. (4) and (5) into the Hamiltonian (3) and
integrating over the volume gives

Ĥ = −24ε0χ
(3)
eff

EpẼ∗
1 Ẽ∗

2 Ẽ∗
3

Aeff
f (�β )â†

1â†
2â†

3 + H.c. (8)

Here we have introduced the effective mode area as

Aeff =
(∫

F̃p(x, y)F̃ ∗
1 (x, y)F̃ ∗

2 (x, y)F̃ ∗
3 (x, y) dxdy

)−1

, (9)

and the phase matching function as

f (�β ) = Lsinc

(
�βL

2

)
exp

(
i
�βL

2

)
, (10)

where L is the fiber length and the propagation constant
mismatch is given by

�β = βp − β1 − β2 − β3 − βNL. (11)

We account for the cross and self-phase modulation terms,
which we dropped from the Hamiltonian, by reintroducing

a nonlinear momentum mismatch term βNL = [γp − 2(γp,1 +
γp,2 + γp,3)]Pp, where γp is the nonlinear coefficient for the
pump self-phase modulation,

γp = 3χ (3)ωp

4ε0c2n2
pA(p)

eff

, (12)

and γp,n is the nonlinear coefficient for cross-phase modula-
tion,

γp,n = 3χ (3)ωn

4ε0c2npnnA(p,n)
eff

. (13)

The effective mode area for the pump self-phase modulation
is

A(p)
eff =

(∫
|F̃p(x, y)|4 dx dy

)−1

, (14)

whereas for the cross phase modulation term the effective
mode area between the pump and the photon triplet is

A(p,n)
eff =

(∫
|F̃p(x, y)|2|F̃n(x, y)|2 dx dy

)−1

. (15)

It is worth noting that if the peak pump power is low, for
example if one works in the continuous-wave (cw) regime,
then the cross and self-modulation terms are negligible. Sub-
stituting Eq. (8) into Eq. (2) gives the following differential
rate of triplet emission:

dR = h̄

π2
Ppγ

2
1,2,3

ω1ω2ω3

ω2
p

× vg(ω1)vg(ω2)vg(ω3)| f (�β )|2δ(�ω) dβ1 dβ2 dβ3,

(16)

where the nonlinear coefficient is

γ 2
1,2,3 = 9

[
χ

(3)
eff

]2
ω2

p

ε2
0 c4npn1n2n3A2

eff

. (17)

Equation (16) can be rewritten in terms of frequency as
opposed to propagation constant, using the relation for group
velocity dβn

dωn
= 1

vg(ωn ) , as

dR(ω1, ω2, ω3) = h̄

π2
Ppγ

2
1,2,3

× ω1ω2ω3

ω2
p

| f (�β )|2δ(�ω) dω1 dω2 dω3.

(18)

Because the rate of unseeded TOPDC scales linearly with
the pump power, it is more favorable to work in the cw regime.
Working in the pulsed regime would lead to competing non-
linear processes that scale nonlinearly with the pump power.
Light from such processes could saturate detectors or interfere
with the spontaneous generation of triplets.

B. Seeded TOPDC

Stimulation of TOPDC requires a seed beam in one of the
triplet modes, 1, 2, or 3. In all the cases below we choose to
replace mode 3 with the seed, which we will denote by the
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FIG. 1. SEM image of the hybrid fiber (a) and its inner core
structure (b).

subscript s. If the seed beam is strong then it can be described
by a classical field, hence the Hamiltonian in Eq. (8) can be
rewritten as

Ĥs = −24ε0χ
(3)
eff

EpE∗
s Ẽ∗

1 Ẽ∗
2

Aeff
f (�β )â†

1â†
2 + c.c. (19)

Here, the classical amplitude E∗
s of the seed is defined by

Eq. (6) with ωs = ω3. From this it is clear that when a seed is
present, the three-photon state is lost and instead a two-photon
state is generated [19]. Since we now consider the product of
two classical fields there is an advantage in using a pulsed
source. If the seed and pump pulses are overlapped spatially
and temporally, then their product averaged over time will
introduce an enhancement factor equivalent to the inverse duty
cycle of the laser.

In the pulsed regime the monochromatic approximation
breaks down and the Fermi golden rule must be rewritten.
Assuming a square pulse, the probability of a two-photon
transition occurring over the pulse duration t is

�i→ f (t ) = 1

h̄2 |〈11, 12|Ĥs|01, 02〉|2ρ(�ω, t ), (20)

where

ρ(�ω, t ) = t2sinc

(
�ωt

2

)2

. (21)

Again integrating over a set of wave-vector intervals gives the
differential number of transitions per pulse:

dN = L2
q

4π2h̄2 |〈11, 12|Ĥs|01, 02〉|2ρ(�ω, t )dβ1 dβ2. (22)

Expanding out the quantum average gives

dN = 1

π2
PpPsγ

2
1,2,s

ω1ω2

(ω̃p)2

× vg(ω1)vg(ω2)| f (�β )|2ρ(�ω, t ) dβ1 dβ2, (23)

where the nonlinear interaction coefficient for the seeded
process is

γ 2
1,2,s = 9

[
χ

(3)
eff

]2
(ω̃p)2

ε2
0 c4npn1n2nsA2

eff

(24)

FIG. 2. Dispersion curves of the photonic band-gap mode and
the infrared fundamental mode of the hybrid fiber. The insets show
the calculated spatial distributions of the modes.

and ω̃p = ωp − ωs. For practical reasons, we rewrite Eq. (23)
in terms of frequency intervals, which yields

dN (ω1, ω2) = 1

π2
PpPsγ

2
1,2,s

× ω1ω2

(ω̃p)2
| f (�β )|2ρ(�ω, t ) dω1 dω2. (25)

It is worth noting that dN (ω1, ω2) and dR(ω1, ω2, ω3) have
different dimensionality, the former being the number of pairs
emitted per pulse (dimensionless) and the latter being a rate
of triplet emission (Hz) in the cw regime.

III. ESTIMATES AND EXPERIMENTAL EVIDENCE

In order to ensure the efficient generation of photon triplets
along the entire fiber length, phase matching has to be ful-
filled; see Eq. (11). Normally this can be achieved by the
so-called intermodal phase matching, where different fields
propagate in the fiber in different spatial modes. In the case
of triplet generation phase matching is usually found when
the pump at ωp is in a high-order mode while the three
photons are in the fundamental mode. Coupling light into a
high-order mode is quite challenging and usually not very
efficient. Furthermore, there are no free parameters that allow
one to tune the dispersion, therefore, for a standard optical

FIG. 3. Normalized spectra and near-field intensity distributions
of the third harmonic (a) and the pump (b) for the hybrid fiber. The
insets show the near field at the output of the fiber.
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TABLE I. Comparison of the expected triplet generation rate for different fiber types under realistic experimental conditions. The pump
power of the tapered and the hybrid fibers is limited by the damage threshold, and for the hollow-core fiber by the high-order mode preparation.
In the case of the solid-core fibers the length is limited by the fiber homogeneity and, in the case of hollow-core PCF, by the gas-cell dimensions.

Fiber type
Pump power

(Pp)
χ

(3)
eff

(10−22m2 V−2)

Pump
wavelength

(μm)

Effective
area (Aeff)

(μm2)
Length (L)

(cm)

Detect.
bandwidth
(�λ) (nm)

Triplet rate
(Hz)

Hybrid core 100 mW 11.5 0.526 865 218 10 150 11
Hollow core 200 mW 0.043 0.532 19 200 100 150 5.5 × 10−6

Tapered 20 mW 2.5 0.532 7.89 10 150 3.2

fiber the phase matching frequencies are fixed. To overcome
these two problems we investigated different types of optical
fibers. The first one is a hybrid fiber that, due to the use of
different guidance mechanisms, allows the phase matching
between single-lobed modes. Not only does this simplify
the coupling, but it also increases the overlap between the
pump and the generated fields. The second one is a hollow-
core fiber filled with xenon gas, which allows tunable phase
matching by changing the gas pressure. Finally, we consider a
tapered fiber, which has a high overlap between the two phase
matching modes due to their high confinement and whose
dispersion can be tuned by changing the gas pressure of the
environment [23].

A. Hybrid fiber

The first fiber that we present is a solid core microstruc-
tured fiber with a double core structure [13]. This fiber was
designed to circumvent the problem of coupling the pump
beam into a high-order mode by compensating the phase mis-
match using modes of different size, ideally both fundamental.
This comes from the fact that the propagation constant of a
mode at a fixed wavelength can be decreased by just reducing
the mode diameter. The fiber has a photonic band-gap (PBG)
structure that guides the visible mode, surrounded by hollow
channels. The infrared mode is guided by total internal re-
flection, the entire PBG structure acts as the core, and the
surrounding glass, together with the hollow channels, as the
cladding. The inner PBG structure contains rods made of high
refractive index lead-silicate glass (Schott SF6) embedded in
low refractive index glass (Schott LLF1); see Fig. 1 for the
scanning electron micrograph (SEM) of the fiber. The central
rod of SF6 glass is replaced by one of LLF1 in order to create a
defect, that opens up a band gap, allowing guiding in the core.
By carefully tuning the diameter of the rods and the distance

FIG. 4. SEM picture of the hollow-core structure (a) with a
detailed view of a capillary (b).

between them (the pitch), it is possible to create a band gap
that confines light at a particular frequency [24]. In our case,
the target wavelength is 532 nm. For our fiber we choose a
diameter of about 380 nm for the SF6 glass rods and a pitch
of 1.05 μm. The rods are arranged in a hexagonal geometry
with five concentric rings. On the one hand, increasing the
number of rings will decrease the guidance losses of the
visible mode but on the other hand, the dimensions of the PBG
structure define the infrared mode size and therefore its dis-
persion. Figure 2 shows the dispersion and the intensity dis-
tributions of guided modes simulated with the finite-element
model (FEM) [13].

Photon triplet generation can be seen as the reverse process
of third-harmonic generation (THG), with which it shares,
among many other features, the phase matching conditions.
We therefore used THG to test the phase matching for the
manufactured fiber. Due to the small dimensions it is dif-
ficult to precisely control the fiber parameters and achieve
phase matching at exactly 532 nm. Therefore we used an
optical parametric generator (OPG) pumped with the second
harmonic of a Nd:YAG laser (532 nm) with 20 ps pulse
duration and 1 kHz repetition rate [25]. The output of the
OPG was tunable over more than 200 nm with about 10 mW
average power. Using this source we generated third-harmonic
radiation in the optical fiber. The phase matching wavelength
was found at 520 nm and the near field intensity distribution
of the mode was measured; see Fig. 3.

Starting from the mode electric fields, obtained with the
FEM simulations, we calculated an effective area of A(p,n)

eff =
218 μm2. We considered the effective third-order suscepti-
bility of SF6 glass χ (3) = 1.15 × 10−21 m2 V−2 [26]. Using

FIG. 5. The calculated (red dashed line) and measured (blue
continuous line) loss for the single-ring PCF designed for the photon
triplet generation.
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FIG. 6. Difference between the refractive indices for 532 and
1596 nm vs the Xe pressure in a single-ring PCF. The insets show
the simulated intensity distributions of the modes. The insets show
the near field at the output of the fiber.

Eq. (18) and assuming a pump power of 100 mW (cw), a
length of 10 cm, and a detection bandwidth of 150 nm, we
obtained an expected spontaneous triplet generation rate of
11 Hz (Table I).

B. Gas-filled hollow-core fiber

The second fiber that we present is a gas-filled hollow-
core photonic-crystal fiber (PCF). Hollow-core fibers have the
advantage that they allow tunable phase matching by changing
the pressure of the filling gas. For our experiment we choose
to use xenon due to its high nonlinearity [27] and the very low
reactivity. There are several geometries of hollow-core fibers;
the one that we consider in this paper is known as single-ring
fiber [28,29]. It consists of a ring of capillaries attached to the
inner surface of a glass tube; see Fig. 4(a). Light is confined
in the core region by means of antiresonant reflection at
the core-cladding interface. The wall thickness of the glass
capillaries defines the resonant frequencies at which the light
is not guided. The dimensions of the capillaries determine the
modal guidance of the fiber. The light is guided in the core
only if there is no coupling with the capillary modes [30].
For triplet generation we require minimum guidance losses for

FIG. 7. Phase matched third-harmonic high-order modes gener-
ated by changing the xenon pressure inside the gas chamber [from
(a) to (c)]. Simulated Poynting vector of the guided modes [from
(d) to (f)].

FIG. 8. Normalized spectra and measured near-field intensity
distributions of the TH (a) and the pump (b) for Xe-filled PCF at
8.7 bars.

infrared light around 1600 nm in the fundamental mode and at
532 nm for the phase-matched high-order mode. Depending
on the core diameter, the phase matching can be achieved
at different gas pressures [31]. A smaller core size usually
implies higher guidance losses but at the same time also a
higher gas pressure at which phase matching is achieved and
therefore higher nonlinearity. The designed fiber has a core
diameter of 38.7 μm surrounded by a ring of 12 capillaries,
each with a diameter of 7.1 μm. For this configuration there
is no coupling between the visible high-order mode and the
capillaries’ modes at the same frequency.

Using the formula given in Refs. [32,33], it is possible to
estimate the resonance frequencies for given parameters of the
fiber. The glass thickness of the capillaries was chosen to be
350 nm in order to set the resonant frequencies far from the
region of interest. The drawn fiber, with the corresponding
glass thickness, has relatively low losses both at 532 nm and
around 1596 nm. Figure 5 shows that, in agreement with the
calculation (red line), the measured (blue line) loss in the
ranges of interest does not exceed 1 dB/m.

0 0.5 1
taper factor r/r

10-2

10-1

100

 (r
ad

)

lossy

adiabatic

vis. 11 - 12

vis. 12 - 13

IR 11 - 12

FIG. 9. Maximal angle allowing an adiabatic transition for HE11

and HE12, with the pump in the visible and the generated signal in the
IR. The taper should be designed such that the local angle always lies
within the shaded area to ensure adiabaticity. The red dots correspond
to the maximum angle to avoid coupling from the IR HE11 to the next
relevant higher-order mode HE12. The green triangles (blue squares)
are the criterion for the visible light to avoid coupling between the
HE12 and the next relevant lower- (higher-) modes.
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FIG. 10. Normalized spectra and measured near-field intensity
distributions of the TH (a) and the pump (b) for tapered single-mode
fiber in vacuum. The insets show the Poynting vector distributions at
the output of the fiber.

Using a FEM model of the fiber, we simulated the guided
modes and their dispersion as a function of the Xe pressure;
see Fig. 6. The phase matching was found at 8.7 bars.

In order to verify the phase matching we coupled the
output of our OPG tuned at 1596 nm into the fiber core and
observed the THG. To reduce the bandwidth of the pump
beam we used a cw seed beam at 1596 nm in the OPG. The
fiber was mounted in a gas cell with a Xe pressure of about
15 bars. By gradually reducing the gas pressure we achieved
the THG for different high-order modes at 532 nm; see Fig. 7.
Our target mode, i.e., the one with the lowest possible order
and therefore with the lowest effective area, was achieved
at 8.7 bars. Figure 8 shows the recorded spectra and the
intensity distributions for the target mode at 532 nm and the
fundamental IR mode.

In order to estimate the level of luminescence occurring in
the gas-filled hollow-core experiment, we pumped the fiber
with a cw pump beam at 532 nm. We measured the level of
output signal in the spectral range of TOPDC, making use
of a self-made monochromator [23]. In the case of solid-core
fibers, the material absorption in the visible yields a broad-
band emission of luminescence, which can extend over the
spectral range of TOPDC, hampering if not totally preventing
its measurement [34]. In the case of hollow-core fibers, the

Intensity [arb. units]

Position (μm)
0 10-10 5-5

0

1

0.5

460HP SMF28

HE12HE11

0

10

-10

( µ
m

)
y

HE12

SMF28

0 10-10
(µm)x

0 10-10
(µm)x

HE11

460HP

z1 z2 z3 z4 z5

(a)

(b)

FIG. 11. (a) Proposed device based on 460HP and SMF28 fibers
spliced together, with a taper in the SMF28 stretch. (b) HE11 mode
propagating in the 460HP fiber, HE12 mode propagating in the
SMF28 fiber, and diametrical section of both modes.

0 10-10

200
600

0
400

-5 5

LP01

LP02

-10 100
-10

-10

10

0

10

   0 600

0

0

6

-6

300
6

0

FIG. 12. Left: HE11 and HE12 modes in the SMF28 fiber. Middle:
Resulting intensity pattern in the zy, xz, and xy planes. Right:
Resulting intensity pattern in the xz plane.

measurement does not show any change in the dark counts,
even at 200 mW pump power. This confirms that the number
of photons generated is below 10 Hz, which is the sensitivity
of our apparatus.

The third-order nonlinearity of xenon can be estimated
from Refs. [27,35] χ

(3)
0 = 6.4 × 10−26 m2 V−2, where the

subscript 0 indicates that the susceptibility was measured at
a pressure of 1 bar and at room temperature. The effective
nonlinearity is proportional to the gas pressure, therefore at
8.7 bars, the susceptibility is about nine times larger than
χ

(3)
0 . It is worth noting that by reducing the core diameter

and improving the fiber design (to reduce the confinement
losses), not only will the effective area decrease but also
the phase matching will move to higher pressure where the
nonlinearity is higher. Due to the relatively low third-order
nonlinearity of gases compared to solids, in the hollow-core
PCF the spontaneous triplet generation rate is on the order of
10−5 Hz for pumping 1 m of fiber with 200 mW (Table I).
Nevertheless, hollow-core PCFs are very suitable for seeded
generation, since they can guide high laser power without
being damaged. The only restrictions are the preparation and
the coupling efficiency of the high-order pump mode.

C. Tapered fiber

The final fiber under consideration as a platform for
photon-triplet generation is a tapered optical fiber. Fiber tapers
are manufactured by stretching a conventional step-index fiber
(SMF28) over a scanning oxybutane flame [36]. Controlling
the pulling speed and scanning range allows for a precise con-
trol over the taper parameters. Decreasing the diameter of the

FIG. 13. Imaged intensity pattern at the output of the fiber during
taper fabrication, obtained from a video recorded by a charge-
coupled device camera, with a 90-ms time between frames, corre-
sponding to a ∼75 μm taper length differential between frames.
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TABLE II. Comparison of the expected pair generation rate for different fiber types in the case of a single seed. The pump and the seed
powers of all the fibers are chosen to limit the generation of photon pairs to allow coincidence measurements. For the calculation of the number
of generated photon pairs we considered a pulse duration of 20 ps.

Fiber type Pump pulse energy Seed wavelength (μm) Seed pulse energy Detect. bandwidth (�λ) (nm) Number of pairs (per pulse)

Hybrid core 5 nJ 1.67 1 nJ 60 0.48
Hollow core 200 μJ 1.605 10 μJ 200 0.50
Tapered 1 nJ 1.6412 0.1 nJ 50 0.52

fiber increases its effective nonlinearity, as well as drastically
changing the waveguide contribution to the dispersion. The
fiber tapers of interest here have a submicron waist diameter.
At this diameter the initial fiber core is reduced so much that
it does not play any significant role in the guiding mechanism,
and the dispersion of the taper waist is given by the dispersion
of a silica rod with the corresponding diameter in vacuum
[37]. For triplet generation, the use of tapered optical fiber
requires intermodal phase matching similar to the case of
gas-filled hollow-core fibers.

As shown by Corona et al. [11], the most favorable case
occurs when the visible pump light is guided in the HE12

mode and the generated photon triplet state is in the funda-
mental mode of the fiber. It is essential to ensure an adiabatic
transition for both spatial modes involved in the generation
process. Therefore, the transition profile of the taper must
be designed very carefully. In particular, the local transition
angle �(z) must remain small enough to avoid coupling
between the fiber modes. The maximum angle allowed for
adiabatic mode conversion between the untapered fiber and
the taper waist is given by [38]

� = ρ

2π
(βi − βi±1), (26)

where ρ is the local core radius of the taper, βi(z) is the local
wave number of the ith mode to couple into the waist taper
and βi+1 is the closest mode, to which coupling should be
avoided. Here, we used a finite-difference eigenmode solver
to compute the wave number for the HE11 and HE12 for the IR
and the same two modes plus the HE13 in the visible (Fig. 9).
In this calculation the HE12,IR and HE13,vis are guided at the
cladding-air interface at all places along the transition, while
the other modes are guided in the core of the untapered fiber
and evolve into cladding modes along the transition. Using
Eq. (26) we can calculate the three different curves in Fig. 9
corresponding to the adiabatic angles that avoid coupling
between HE11 and HE12 in both the visible and the IR, as well

as avoiding coupling between HE12 and HE13 in the visible.
The actual transition should always lie below all three curves.

Pumping at 532 nm, the diameter of the tapered waist
should be 790 nm for degenerate photon triplet generation.
In this case, the effective area Aeff = 7.9 μm2 and using
χ

(3)
eff = 10−22 m2 V−2 for silica we can evaluate a generation

rate as high as 3.2 Hz for a 10-cm-long taper with a pump of
20 mW (Table I).

It is important to note that the exact value of the diameter
is extremely critical. With the same pumping condition but
a tapered waist of 791 nm the phase matching is no longer
degenerate and the emission bandwidth is 130 nm (see the
Appendix). The same effect can be obtained by changing the
pump wavelength by about 0.5 nm. Such stringent fabrication
tolerance cannot be met in practice. We can however circum-
vent this difficulty by encapsulating the tapered fiber inside a
gas cell with an adjustable pressure [23].

Similarly to the other fibers, third-harmonic generation was
measured in the fiber taper. The fiber was pumped with a
tunable laser that had a 0.25-MHz repetition rate, 160-fs pulse
duration, and a central wavelength at 1375 nm; see Fig. 10.
The third harmonic was generated at 457 nm in the expected
HE12 guided mode.

One of the challenges that we face when employing tapered
fibers for TOPDC is the difficulty of preferentially coupling
the pump, at 532 nm, to the HE12 mode. We have explored a
solution which involves the use of two different types of fiber,
460HP and SMF28 spliced together, as shown schematically
in Fig. 11(a), with the tapered region appearing along the
SMF28 stretch of fiber. While the 460HP fiber is characterized
by a core diameter of 2.5 μm and is single-mode at 532 nm,
the SMF28 fiber with a core diameter of 8.2 μm is multimode
at this wavelength (but single mode at the TOPDC center
wavelength of 1596 nm).

The concept that we exploit is that the fundamental mode
HE11 at 532 nm propagating in the 460HP fiber excites
preferentially, upon arrival to the intrafiber interface, the HE12

FIG. 14. The spectral density S(ω1, ω2) for the hybrid-core fiber at different pump frequencies.
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mode in the SMF28 fiber. This occurs because (i) the mode
field diameter of the HE11 mode in the 460HP fiber is very
similar to the diameter of the internal lobe of the HE12 mode
in the SMF28 fiber, and (ii) the effective index of refraction
of the incoming HE11 mode and that of the excited HE12

mode are very similar, differing only by ∼0.001. In Fig. 11(b)
we plot the simulated incoming HE11 mode, as well as the
excited HE12 mode, along with a diametrical section of these
two modes overlapped in a single plot making it clear that
the modes are remarkably similar within the internal lobe.
This leads to an unusually high mode overlap between the
incoming and excited modes (at approximately the same level
as the overlap between the fundamental modes in the two
fibers). Note that the SMF28 can support higher-order modes
but the overlap of these modes with HE11 from the 460HP
drops dramatically.

In the SMF28, the presence of the HE11 and HE12 modes
[transverse amplitudes E1(x, y) and E2(x, y), and propagation
constants β1 and β2 respectively] leads to a mode beating with
a period 2π/(β1 − β2) = 230 μm. In Fig. 12 we show the
evolution of the intensity pattern along the fiber resulting from
the beating of the fundamental HE11 and higher-order mode
HE12.

We fabricated a device as described above, with 460HP and
SMF28 fibers spliced together. The SMF28 is then tapered
down to ∼0.8 μm diameter. As the taper is made its length
increases. During this process it is then possible to observe,
in real time, the evolution of the beating pattern between the
two modes involved as a function of length by monitoring
the output of the device. Figure 13 shows the evolution of
the intensity of the near field at the output of the SMF28
as a function of the added length. This is consistent with
the simulated beating period of 230 μm, confirming the
considered approach.

D. Seeding

Although seeding third-order parametric down-conversion
reduces the generated state from a three-photon to a two-
photon state, it does dramatically increase the emission rate
probability. While the hybrid and tapered fibers have mea-
surable spontaneous three-photon emission rates, due to the
poor overlap and low cubic susceptibility the hollow-core
fiber does not (see Table I). Hence to observe any effect in
the hollow-core fiber, stimulating one of the three photons
is a necessity. Despite losing the three-photon correlations,

seeding can still lead to information about the spontaneous
three-photon state using stimulated emission tomography.
Moving to the seeded emission probabilities it is clear that
one can observe photon pairs for each fiber type. Here we
assume a pulsed laser with a 20-ps pulse duration and 1-kHz
repetition rate, hence working with single-photon detectors
the number of photons detected for the hybrid and tapered
fibers would be limited by the repetition rate. In order to
perform a proper correlation measurement, the pump or the
seed power has to be reduced to generate less then a pair per
pulse. The estimated conversion probabilities with seeding are
given in Table II.

IV. CONCLUSION

We presented three different types of fibers and estimated
their potential viability as platforms on which to generate
photon triplet states via a direct cubic interaction. We checked
this for both the spontaneous and seeded regimes. The hybrid
and tapered fibers proved to be the best fibers from which to
observe photon triplets. However the former requires a tunable
pump laser to satisfy phase matching due to its fixed geometry.
Despite this drawback, the main advantage the hybrid fiber has
over the other two designs is the ability to guide both the pump
and triplets in a nearly Gaussian mode simultaneously. In
contrast to the hybrid fiber, one can tune the phase matching in
the the tapered fiber without changing the pump wavelength.
This can be done by placing the tapered fiber into a gas with
tunable pressure. In addition, with the system we propose,
it is possible to launch a high-order mode into the tapered
fiber starting from a nearly Gaussian mode. Currently the
design of the hollow-core fiber gives a very small conversion
efficiency. However this can be improved by reducing the
core size. By reducing the core diameter by only a factor of
2, the conversion efficiency can be improved by around two
orders of magnitude. In this case, a hollow-core fiber, with
its high damage threshold and the pressure-dependent phase
matching, is a good candidate for seeding experiments.

APPENDIX: SPECTRAL DENSITY OF
THREE-PHOTON EMISSION

The expression for dR(ω1, ω2, ω3) in Eq. (18) can be
simplified to a function of two variables by integrating ω3

over the delta function δ(�ω). Due to energy conservation
this fixes the frequency of ω3 = ωp − ω1 − ω2. Thus we can

FIG. 15. The spectral density S(ω1, ω2) for the hollow-core fiber at different xenon pressures.
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FIG. 16. The spectral density S(ω1, ω2) for the tapered fiber at different taper diameters.

rewrite Eq. (18) as

dR(ω1, ω2) = h̄

2π2
Ppγ

2
1,2,3

×ω1ω2(ωp − ω1 − ω2)

ω2
p

| f (�β )|2 dω1 dω2.

(A1)

Plotting S(ω1, ω2) = dR(ω1,ω2 )
dω1 dω2

gives the spectral density of the
three-photon emission.

Figure 14 shows the spectral density for the hybrid fiber
for the parameters shown in Table I. Varying the pump wave-
length by only 0.01 nm, one changes the spectral density
vastly. This is due to the extremely different dispersion proper-
ties of the inner and outer core. In addition the spectral density
is very broad, ranging over almost 150 nm. A combination

of these two attributes makes it critical for the pump to be
narrow-band enough to minimize the collection bandwidth
and increase the signal-to-noise ratio.

Figure 15 shows the spectral density for the hollow-core
fiber filled with xenon gas and pumped at 532 nm. By reducing
the gas pressure it is possible to pass from degenerate to
nondegenerate phase matching. Although the spectral width
has a strong dependence on the pressure, this can be easily
and precisely controlled with standard equipment.

Finally, in Fig. 16 the spectral density for the tapered
fiber is shown. The tapered region is highly dispersive due
to the high confinement and increasing mode leakage into the
ambient environment at longer wavelengths. This leads to a
very narrow emission bandwidth. Although it means that the
phase matching is critical, it is an advantage to work with the
narrow spectrum as it means that the full emission spectrum
can be collected.
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