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A weak values approach for testing simultaneous
Einstein–Podolsky–Rosen elements of reality
for non-commuting observables
Omar Calderón-Losada 1✉, Tonatiuh T. Moctezuma Quistian2, Hector Cruz-Ramirez2,

Sebastián Murgueitio Ramirez 3,4, Alfred B. U’Ren2, Alonso Botero 3 & Alejandra Valencia 1

In questioning the completeness of quantum mechanics, Einstein–Podolsky–Rosen (EPR)

claimed that from the outcomes of local experiments performed on an entangled system, it

was possible to ascribe simultaneous reality to the values of certain incompatible obser-

vables. As EPR acknowledged, the inevitable disturbance of quantum measurements prevents

the precise verification of these assertions on a single system. However, the EPR elements of

reality can still be tested at the ensemble level through weak measurements—which mini-

mally disturb the measured system—by interpreting the EPR assertions as assertions about

weak values that follow from the outcomes of projective measurements. Here, we report an

implementation of such a test through joint weak measurements followed by post-selection

on polarization-entangled photon pairs. Our results show that there is a correspondence

between the obtained joint weak values and the inferred elements of reality in the polarization

version of the EPR assertions.
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The seminal 1935 paper of Einstein–Podolsky–Rosen1 (EPR)
is without question one of the most important and con-
troversial papers in quantum mechanics, given the variety

and intensity of discussions on foundational aspects that it trig-
gered. Interestingly, while hidden variable theories2 and quantum
nonlocality3,4 are perhaps the topics that historically have most
commonly been associated with the EPR paper these two aspects
are not explicitly addressed in the paper itself. Rather, EPR
intended to question the completeness of quantum theory by
proposing that, within what they claim is a reasonable criterion of
reality, one can make predictions with certainty about the values
of two non-commuting observables in any one of two subsystems
described by a continuous variable version of what is now called
the EPR state.

In terms of Bohm’s spin-1/2 variant5, the EPR argument goes
like this: consider the predictions made by two space-like sepa-
rated observers, Alice and Bob, about the outcomes of measure-
ments carried out on the bipartite EPR-Bohm-singlet state: when
Alice measures the Pauli operator σ̂z on particle one with the
result sð1Þz and Bob measures σ̂z on particle two with the result sð2Þz ,
Alice and Bob can predict with certainty the outcome of the
other’s measurement since in this case sð1Þz ¼ �sð2Þz . Similarly,
since the singlet state exhibits the same correlations in any
measurement basis, if the Pauli operator σ̂x is measured by both
observers, with results sð1Þx and sð2Þx , Alice and Bob can predict with
certainty the outcome of the others measurement using
sð2Þx ¼ �sð1Þx . Given the above facts, now consider the situation in
which say, Alice measures σ̂x on particle one, and Bob measures
σ̂z on particle two; then, the EPR claim is that Bob’s prediction
about sð1Þz and Alice’s predictions about sð2Þx , namely,

sð1Þz ¼ �sð2Þz ; ð1Þ

sð2Þx ¼ �sð1Þx ; ð2Þ
should still be valid simultaneously given the space-like separa-
tion of the measurements. In other words, the EPR argument
states that knowledge of the outcomes sð1Þx and sð2Þz allows us to
assign elements of reality to the values sð2Þx and sð1Þz , respectively,
and therefore to the simultaneous values of two non-commuting
observables, σ̂x and σ̂z , of each particle.

As stated in the original EPR paper, the verification of the
predictions in Eqs. (1) and (2) is beyond experimental reach given
their interpretation of the measurement process involved. Indeed,
in order to test the simultaneous validity of Eqs. (1) and (2), the
observers would need to perform simultaneous or sequential
measurements of non-commuting observables using for example
the scheme shown in Fig. 1a. This scheme is forbidden in the
standard approach to quantum mechanics, in which the mea-
surements are understood as projective measurements, which
involve a strong coupling between system and measurement
device, and therefore drastically perturb the state. However, these
objections can be overcome if the measurements are understood
to be weak measurements (WM)6,7, which minimally disturb the
system. These kinds of measurements have proven to be a useful
tool for explaining certain counter-intuitive and paradoxical
behaviors predicted by the quantum theory. For example, WMs
have been applied to experimentally prove and explain the three-
box8 and Hardy’s9–11 paradoxes, to reconstruct Bohmian-like
trajectories12, to measure anomalous probabilities in Bell-like
tests13, to perform sequential or simultaneous measurements on
the same particle14,15, to test measurement disturbance and
complementary relations16, and more recently, to construct
ontological models for quantum theory17. Given this broad scope
of applications for the WM scheme, it is therefore interesting to

explore whether the EPR predictions can be verified using weak
rather than projective measurements.

In this paper, we take advantage of WMs to propose and
experimentally prove the joint validity of a pair of equations that
can be interpreted as the predictions represented by Eqs. (1) and
(2), except that they are formulated in terms of weak values in a
post-selected ensemble defined by Alice and Bob’s projective
measurements. The confirmation that the weak value predictions
we propose are jointly valid provides positive evidence in favor of
interpreting the joint weak values as EPR elements of reality in
each member of the ensemble, and therefore suggests, in the spirit
of the EPR argument, that simultaneous elements of reality can be
associated to two physical quantities represented by two non-
commuting operators.

Results
Theoretical discussion. In order to propose a pair of equations
that can be considered analogous to the simultaneous predictions
represented by the left hand sides of Eqs. (1) and (2) consider
Fig. 1b, c. These scenarios correspond to a typical setup designed
to measure local weak values of the form

�
σ̂ð1Þz

�
w and

�
σ̂ð2Þx

�
w, in

which a weak measurement is performed, appropriately preceded
by a pre-selection and followed by a post-selection18,19. The weak
value formula for an operator Ô is

hÔiw ¼ hψfinjÔjψinii
ψfinjψini

� � : ð3Þ

When the initial state is the singlet,
ψini

�� � ¼ ψ�j i ¼ 1ffiffi
2

p þ1z;�1zj i � 1ffiffi
2

p �1z;þ1zj i, and the final

state is ψfin

�� � ¼ sxj i1 szj i2, with sη

��� E
μ

satisfying

σ̂ðμÞη sη

��� E
μ
¼ sðμÞη sη

��� E
μ
, for particle μ ∈ {1, 2} and direction

η ∈ {x, y, z}, the weak values of σ̂z and σ̂x , in the situations
depicted in Fig. 1b and c are respectively,

hσ̂ð1Þz iw ¼ �sð2Þz ; ð4Þ

hσ̂ð2Þx iw ¼ �sð1Þx : ð5Þ
Equations (4) and (5) state a relationship between weak values

and the outcomes of the corresponding post-selections. Due to
the formal similarity with Eqs. (1) and (2), we interpret (4) and
(5) as the EPR predictions. However, as these equations involve
experimentally-accessible weak values, they allow us to design an
experiment through which we can verify their joint validity. Such
an experimental scheme is shown in Fig. 1d where it is possible to
jointly measure the weak values,

�
σ̂ð1Þz

�
w and

�
σ̂ð2Þx

�
w, and

compare them with the outcomes of the corresponding projective
measurements.

The outcome of the projective measurements sð1Þx and sð2Þz are
defined by the post-selected state and the weak values are obtained
from a statistical analysis of the readout of the measuring devices
associated with the weak measurements. There are four possible

combinations of post-selected states, defined by sðμÞη 2 f�1;þ1g,
which can be used for testing Eqs.(4) and (5). These four states are
listed in Table 1 together with the outcome of the projective final
measurements.

For the scheme in Fig. 1d, the weak value is obtained from the
joint probability distribution P(r1, r2) of finding the readout r1 in
the weak measurement device for σ̂ð1Þz and readout r2 in the the
weak measurement device for σ̂ð2Þx , given the initial and final
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states. This joint probability is given by

Pðr1; r2Þ / j ψfin; r1; r2jÛ jψini; ϕd
� �j2; ð6Þ

where ϕd
�� �

and r1; r2j i denote the initial and final states of the
meter, respectively, and Û is the unitary operator that describes
the measurement process.

In general, a measurement can be modeled by the so-called
von-Neumann scheme20 where an observable of interest Â is
coupled to an observable associated with the measurement device
P̂, which is conjugate to the readout of the pointer observable.
This coupling can be represented by a unitary operation
Û ¼ expð�iĤI t=_Þ, with t the interaction time and ĤI ¼ gÂ�
P̂ the interaction Hamiltonian. The parameter g denotes the
strength of the coupling. Before the measurement, the state of the
meter can be considered as a Gaussian distribution centered at
zero with width (standard deviation) Δ. As a result of the
interaction between the system and the meter, such a distribution
suffers a shift given by gt19. Depending on the ratio Δ/(gt), the
regimes of strong measurement, when Δ/(gt) ≪ 1, and weak
measurement, when Δ/(gt) ≫ 1, are defined.

For the situation in Fig. 1d, a local weak measurement is
performed on each of the particles and the meters for each of the
measurements are assumed to be initially independent. In this

case, ĤI can be written as

ĤI ¼ g1σ̂
ð1Þ
z � P̂ð1Þ þ g2σ̂

ð2Þ
x � P̂ð2Þ

: ð7Þ
With this interaction Hamiltonian, P(r1, r2) in the weak regime
can be approximated, at first order in gμt, as

Pwðr1; r2Þ � N exp � 1
2
δr>Σ�1δr

� �
; ð8Þ

where N is a normalization constant, δrμ ¼ rμ � �rμ, and Σ ¼
diagðΔ2

1;Δ
2
2Þ þ OðdμdνÞ is the co-variance matrix with dμ= gμt

and Δμ (with μ= 1, 2) being the width of the Gaussian
distribution associated with each meter. A detailed derivation
can be seen in the Supplementary Note 1.

Given the distribution Pw(r1, r2), the weak values
�
σ̂ð1Þz

�
w and�

σ̂ð2Þx

�
w required to prove the validity of Eqs. (4) and (5) are

obtained operationally from the average shift of the respective
meters according to

Re
�
σ̂ð1Þz

�
w ¼ �r1

d1
; Re

�
σ̂ð2Þx

�
w ¼ �r2

d2
; ð9Þ

where �r1 and �r2 are the expectation values of r1 and r2, obtained
from Eq. (8), while d1 and d2 must be estimated independently. In
addition, up to second order in the coupling constants, Pw(r1, r2)
also provides information about the non-local weak value�
σ̂ð1Þz σ̂ð2Þx

�
w
8,21, but this is out of the scope of the present work.

Experimental implementation. Figure 2 depicts the setup uti-
lized for the implementation of the scheme shown in Fig. 1d.
With the help of this setup we have performed a set of local weak
measurements followed by strong measurements of the polar-
ization for each photon in an EPR-singlet entangled pair, pro-
duced by spontaneous parametric down-conversion (SPDC).

The experimental setup consists of four stages. In the first one,
ψini

�� �
and the initial state of the meters ϕd

�� �
, needed to perform

the weak measurements, are prepared. ψini

�� �
, which corresponds

to photon pairs in a polarization-entangled singlet state, is
produced by type II SPDC in a periodically-poled potassium
titanyl phosphate (PPKTP) crystal placed within a Sagnac
interferometer and pumped by a laser beam centered at 405 nm
with a narrow linewidth of 200 kHz (MogLabs, DLC-405). For

Fig. 1 Schematic scenarios for testing the simultaneous validity of Eqs. (1) and (2). a Projective measurements of non-commuting operators are applied
successively to each particle. b Scenario for measuring the weak value of σ̂z acting locally on particle 1 whereas the projective measurement of σ̂z is applied
to particle 2. c Scenario for measuring the weak value of σ̂x acting locally on particle 2 whereas the projective measurement of σ̂x is applied to particle 1.
d Scenario proposed in this work for performing successive measurements. Cases (b) and (c) are intended only for conceptual clarity.

Table 1 Possible combinations of post-selection states and
expected weak values.

Post-selection, ψfin

�� �
sð1Þx sð2Þz Experimental

post-selection

��
σ̂ð1Þz

�
w;
�
σ̂ð2Þx

�
w

	

sx ¼ þ1; sz ¼ þ1
�� �

+1 +1 D1;H2

�� �
( −1, −1)

sx ¼ þ1; sz ¼ �1
�� �

+1 −1 D1;V2

�� �
( +1, −1)

sx ¼ �1; sz ¼ �1
�� �

−1 −1 A1;V2

�� �
( +1, +1)

sx ¼ �1; sz ¼ þ1
�� �

−1 +1 A1;H2

�� �
( −1, +1)

Relationships between the outcomes of the projective measurements sðμÞη , and the weak values�
σ̂ð1Þz

�
w,

�
σ̂ð2Þx

�
w, presented as an ordinate pair, for each post-selection state ψfin

�� �
. In the

experiment, the actual post-selections were implemented by using the polarization directions,
where D1 (A1) refers to diagonal (antidiagonal) polarization for particle one.
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the meters, we used the transverse momentum distribution of the
SPDC photons, i.e., the spatial biphoton, Φð~q1;~q2Þ, in the
transverse momentum variables, f~q1;~q2g. We render the function
Φð~q1;~q2Þ factorable by coupling each photon to a single-mode
fiber and thus accomplishing projection of each photon to a
single transverse mode22,23. A local weak measurement is thus
performed on each photon, relying on initially independent
measurement devices.

In the second stage, two sets of optical elements, WM-Set1 and
WM-Set2, were used in order to perform the weak measurements
associated with the operators σ̂z on particle 1 and σ̂x on particle 2.
These sets consist each of a 2-mm-long calcite crystal preceded
and followed by a half waveplate (HWP). For the implementation
of σ̂z and σ̂x the orientation of both HWPs in WM-Set1 and
WM-Set2 were nominally set to 0 and 22.5°, respectively. The
birefringence in the calcite crystals mediates the coupling between
the transverse momentum distribution of the photon and its
polarization, leading to the measurement process. The spatial
separation dμ between outgoing orthogonally-polarized beams
produced by each calcite determines gμt, as gμt= dμ (with
μ ∈ {1, 2}). The length of the two calcite crystals was chosen so
as to produce the same lateral displacement with a nominal value
of d1= d2= 212 μm at 810 nm, i.e., the wavelength at which the
SPDC photons are centered.

In the third stage, post-selection to any of four particular states
ψfin

�� �
was accomplished by means of a polarizer and a motorized

HWP through which each of the two photons is transmitted.
These four polarization states are listed in the third column of
Table 1, where D1 (A1) refers to diagonal (antidiagonal)
polarization for particle one.

Finally, in the fourth stage, we obtained experimentally the
distribution Pw(r1, r2) and retrieved the values of the centroid
coordinates ð�r1;�r2Þ. Specifically, in our experiment �r1 (�r2)
corresponds to a displacement x1 (x2), parallel to the optical
table so that the distribution Pw(x1, x2) can be obtained by

spatially-resolved photon counting, i.e., as a function of x1 and x2.
In our experiment the raster scanning was accomplished by
translating, with the help of computer controlled motors, the tips
of two multimode fibers (each with a 200 μm core diameter), each
leading to an avalanche photo detector. The electronic signals
from the two detectors were sent to an AND gate with a 7 nm
coincidence window so as to record the number of coincidence
counts per unit time.

We prepared a photon pair with its polarization state ψini

�� �
in

the entangled EPR-singlet state ψ�j i ¼ H1;V2j i � V1;H2j ið Þ= ffiffiffi
2

p
,

with fidelity 0.883 ± 0.007, where Hj i ( Vj i) denotes horizontal
(vertical) polarization. Additionally, our photon pairs were prepared
so that they were factorable in the transverse spatial degree of
freedom; this is evident from the experimental measurement of the
initial joint distribution of the readout of the meters P0(x1, x2) as
shown in Fig. 3. The circular shape confirms the absence of spatial

Fig. 2 Experimental setup scheme. Each Weak-Measurement set (WM-Set) consists of two half wave plates (HWPs) and a calcite crystal. Other
elements labeled in the scheme are: A continuous wave laser (CWL), a dual polarizer beam splitter (Dual-PBS), quarter wave plates (QWP), single mode
fibers (SMF), multimode fibers (MMF), single-photon avalanche photo detector (APD) and the coincidence circuit (CC).

Fig. 3 Initial joint distribution of the readout of the meters P0(x1, x2). No
weak measurements and no post-selections were applied. CC denotes
coincidence counts.
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correlations once the signal and idler photons are projected onto
the collection modes of single mode fibers, which, in the case of
a transform-limited biphoton, translates into the absence of
momentum correlations; i.e., Φð~q1;~q2Þ is separable, implying that
the weak measurements carried out on both photons are
independent. By fitting to Gaussian functions for the directions x1
and x2, the widths of the distribution were found to be Δ1= 343 ±
73 μm and Δ2= 367 ± 36 μm.

The displacement produced by each calcite crystal, dμ, which is
needed in Eq. (9), was measured in an alternative setup, and we
obtained dexp1 ¼ 228 ± 5 μm and dexp2 ¼ 232 ± 5 μm. These mea-
surements together with the ones of Δμ lead to Δ1/(g1t)= 1.51 and
Δ2/(g2t) ≈ 1.50. Although these values are strictly not much larger
than unity, it is fair to consider that both measurements are
performed in an approximately weak regime where Eq. (9) is
valid. To see this, let us consider the expectation values �r1 and �r2
obtained from the probability P(r1, r2) in Eq. (6) which are valid
for general values of the ratio Δμ/(gμt). At O

�
Δμ=ðgμtÞ

	
, P(r1, r2)

becomes Pw(r1, r2) that defines the weak values by means of Eq.
(9). If one expands these expectation values up to terms of
O�

Δ2
μ=ðgμtÞ2

	
, the leading correction that appears on the weak

values according to Eq. (9) is around 3%, when Δμ/(gμt) ≈ 1.5,
indicating that for our experimental conditions it is appropriate
to use Eq. (9) for obtaining the respective weak values.

For each of the post-selected states listed in the third column of
Table 1, we measured the experimental distribution Pw(x1, x2),
from which we extracted the values for the centroid coordinates.
Using Eq. (9) and the independently measured values of d1 and
d2, we calculated the corresponding weak values. These data are
shown graphically in Fig. 4, in a coordinate axis formed by�
σ̂ð1Þz

�
w and

�
σ̂ð2Þx

�
w and with its origin placed at the center of

mass of the measured functions Pw(x1, x2), for each of the four
post selections. Four quadrants, I, II, III and IV can be then
recognized and the centroid for each post-selected state appears
in one of them, depending on the post-selection used. In quadrant
III, there are two points because the measurement for the post-
selection ψfin

�� � ¼ D1;H2j i was carried out twice so as to
demonstrate that the weak measurements were indeed producing
a systematic effect.

In order to understand our results, let us frame the discussion
in terms of the coordinate pair

��
σ̂ð1Þz

�
w;
�
σ̂ð2Þx

�
w

	
, for which the

expected values are shown in the last column of Table 1.

Comparing the experimental results in Fig. 4 with the fourth
column of Table 1, there is clearly an agreement between the
quadrant on which the experimental centroid of the distribution
Pw(x1, x2) is located and its expected location as governed by the
chosen post-selection. This agreement reveals that the weak
values are correlated with the outcomes of the strong measure-
ments according to Eqs. (4) and (5), thus proving their joint
validity. The discrepancy between experimental and theoretical
values is due to systematic errors including the non-ideal fidelity
of the two-photon state, a temporal delay introduced by the
calcite crystals in the WM-Sets and possible misalignment of the
angles of the HWPs. So as to understand the role of non-ideal
fidelity of the two-photon state one may consider it to be in the
form of a Werner state ρ̂W ¼ p ψ�j i ψ�h j þ 1�p

4

� 	
I. In this case,

the fidelity between the reconstructed state and ψ�j i gives an
estimate of p which in our case corresponds to 0.844. By
calculating the weak values with the initial polarization state ρ̂W
instead of ψ�j i, one obtains that the measured weak values have
to be corrected by a factor of p as you can see in Supplementary
Note 2. Additionally, the temporal delays due to the calcite
crystals produce a deformation of the square structure (with a
lobe at each vertex), leading instead to the observed
rhomboid shape.

Another way to visualize our experimental results is by plotting
the difference between Pw(x1, x2) and the product of the
distributions P1(x1)P2(x2), where Pμ(xμ) is the probability of
obtaining a detection at the position xμ in the path of particle μ
not conditioned to a detection of the other particle. These results
are shown in Fig. 5 for the four post-selected states shown in
Table 1. The panels correspond, clockwise from the top left, to
A1;H2j i, A1;V2j i, D1;V2j i, and D1;H2j i. It is possible to
recognize in all four panels a bright spot, as well as a dark spot.
The observation of these two spots is an indication of the shifts
suffered by the measuring devices, with respect to their initial
distributions. Placing a Cartesian coordinate system with its
origin at the center of mass of the bright and dark spots, one
observes that the bright spot appears in a specific quadrant, with
the same as pattern as in Fig. 4. The visualization of the
experimental data in Fig. 5 further clarifies the relationship
between weak values and the outcome of the post-selections, in
agreement with the theoretical predictions in Eq. (4) and (5), thus
proving their joint validity.

An interpretation of our results is that a complete post-
selection on one of the particles effectively determines an updated
initial state of the other particle, at least with respect to the weak
values of that particle’s observables. Thus, for instance, if the two
particles are initially prepared in a singlet state and the first

particle is post-selected in the state corresponding to sð1Þx ¼ þ1,
then the weak values of the second particle are consistent with

those of an updated initial state corresponding to sð2Þx ¼ �1. The
conjunction of the two post-selections performed on the two

particles (i.e., sð1Þx ¼ þ1, sð2Þz ¼ þ1) therefore allows us to
interpret the weak values of two additional complementary

observables (sð2Þx ¼ �1, sð1Þz ¼ �1) as witnesses to the "strong”
values that would have been obtained if for the corresponding
particle the post-selection had instead been a verification
measurement of that particle’s updated initial state. Although
the discussion has pertained to the observables σ̂x and σ̂z , the
results here presented could be extended to any arbitrary
observables of two-level systems.

Discussion
We have shown that using joint weak measurements, it is possible
to experimentally test the type of assertions about the

Fig. 4 Experimental weak values for each post-selection. Relationship
between the weak values

�
σ̂ð1Þz

�
w and

�
σ̂ð2Þx

�
w , and the outcomes of the

post-selections
��sð1Þx ; sð2Þz

�
here labeled by H, V, D, and A that represent the

projections in the horizontal, vertical, diagonal and antidiagonal polarization
directions respectively. The error bars were calculated from the standard
error of the mean. The four quadrants of the plane are labeled by Roman
numbers.
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simultaneous values of non-commuting observables that served as
the basis for the EPR critique of the completeness of the
quantum-mechanical description afforded by the wave-function.
The fact that our results are in correspondence with the EPR
predictions allows us to suggest that joint weak measurements,
together with post-selection, can be used to assign simultaneous
elements of reality to two non-commuting observables in the EPR
setting. We acknowledge that this suggestion touches on subtle
issues such as the question of what constitutes an element of
reality24–29, and whether the weak values, which are obtained
from an ensemble, can furthermore be attributed to each member
of that ensemble30,31. While a thorough epistemological discus-
sion of these points lies beyond the scope of this work, we
nevertheless believe that our suggestion is justified. On the one
hand, since weak values are measurable quantities that can be
predicted with certainty at the ensemble level, they can be
interpreted according to the criterion of the EPR paper, as ele-
ments of reality of the corresponding ensemble. On the other
hand, the fact that the weak values are obtained from an ensemble
does not preclude us from making plausible inferences about each
pair in the ensemble. Indeed, the fact that our experimental
results arise from weak measurements that are performed
simultaneously on each trial, together with the more than a
reasonable assumption that the trials are statistically independent,
constitutes positive evidence in favor of interpreting a statistical
property of an ensemble as reflecting a corresponding property of
each of its members, i.e. if we let A be the proposition that the
effect is present in each element of the ensemble, B the propo-
sition that the effect is measurable as an ensemble average, and C
the reasonable implication A ⇒ B under the assumption of sta-
tistical independence, then B is evidence in favor of A given C in
the sense that P(A∣BC)≥P(A∣C)32.

Finally, concerning the EPR controversy on the completeness
of the quantum mechanical description, it is worth noting that the
effects we report can only be retrieved from the weak measure-
ment statistics of an ensemble conditioned by both the initial
preparation of the entangled pair and the post-selections per-
formed on each particle. As has been pointed out elsewhere18,33,
such conditional statistics cannot be predicted using only the

single state vector describing the preselected state, but rather
require two state vectors that describe the pre- and post selec-
tions. In this sense, it is reasonable to suggest that while the single
state vector that only describes an initial preparation of a system
indeed fails to provide a complete description of the testable
physical properties of a quantum system at a given time, the
standard framework of quantum mechanics nonetheless furnishes
the necessary elements to complete the description with an
additional state vector describing a post-selection.

Data availability
All relevant data are available from the corresponding author upon reasonable request.
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