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Abstract

The current COVID-19 public health crisis, caused by SARS-CoV-2 (severe acute respira-

tory syndrome coronavirus 2), has produced a devastating toll both in terms of human life

loss and economic disruption. In this paper we present a machine-learning algorithm capa-

ble of identifying whether a given patient (actually infected or suspected to be infected) is

more likely to survive than to die, or vice-versa. We train this algorithm with historical data,

including medical history, demographic data, as well as COVID-19-related information. This

is extracted from a database of confirmed and suspected COVID-19 infections in Mexico,

constituting the official COVID-19 data compiled and made publicly available by the Mexican

Federal Government. We demonstrate that the proposed method can detect high-risk

patients with high accuracy, in each of four identified clinical stages, thus improving hospital

capacity planning and timely treatment. Furthermore, we show that our method can be

extended to provide optimal estimators for hypothesis-testing techniques commonly-used in

biological and medical statistics. We believe that our work could be of use in the context of

the current pandemic in assisting medical professionals with real-time assessments so as to

determine health care priorities.

1 Introduction

Coronavirus infectious disease (COVID-19) is a recently discovered illness caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of the first week of February

2021, over 106 million SARS-CoV-2 infections and over 2.3 million deaths have been regis-

tered worldwide, in the worst pandemic to afflict humanity since the so-called Spanish flu of

1918, which has overwhelmed the world’s health care systems and caused severe economic

disruption.

As a response to this international public health crisis, scientists and clinicians have made

enormous efforts in the last few months to generate new knowledge and to develop technologi-

cal tools that may help in combating this infectious disease and mitigate its effects. Some of

these efforts include the development of drugs and vaccines [1–4], the construction of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257234 September 20, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Quiroz-Juárez MA, Torres-Gómez A,
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epidemiological models to forecast the dynamics of disease spreading in the population [5–8],

the development of mobile-device applications for tracking infected patients and new cases

[9–11], and the development of strategies and the application of new technologies to manage

the resources and capacities in hospitals [12–14].

An emergency non-pharmaceutical prevention measure adopted in many countries has

been the reduction or suspension of non-essential activities so as to reduce both the rate of

new infections [15] and the risk of exceeding hospital capacities. Undoubtedly, the ability to

rapidly identify high-risk patients and/or correctly assign health care priorities is critical, in

the first case so as to improve hospital capacity planning and in the second case for providing

timely treatment for patients [16]. In this regard, artificial intelligence methods have been rec-

ognized as a powerful and promising technology that can help not only in the identification of

the fatality risk of a given patient seeking medical attention [17, 18], but also for the diagnosis

process [19–22], prediction of disease spreading dynamics [23–27], and tracking of infected

patients as well as likely future patients [28].

Machine learning is a branch of the artificial intelligence field which seeks to endow com-

puters with a “learning capacity” using well-defined algorithms, to improve performance or

make accurate predictions. Typically, these algorithms learn from past information available,

introduced in the form of labeled training sets. The supervised learning algorithms use these

labeled training sets to optimize the parameters of a statistical model so that a loss function is

minimized. The trained model is then able to effectively make predictions using as input data

which have never been used in the training phase. Of course, the quality and size of the data-

sets used are crucial in ensuring the adequate performance of the algorithm [29, 30]. During

the course of the current pandemic machine learning has been used to develop different algo-

rithms that seek to identify, at an early stage, patients who are likely to become infected. These

approaches make predictions relying on basic patient information, clinical symptoms [31–33],

as well as travel history [34] and discharge time of hospitalized patients [16]. Souza et al. [31]

have presented a study for the early identification of patients who can develop severe COVID-

19 symptoms, using supervised machine learning algorithms such as logistic regression, linear

discriminant analysis, naive Bayes, k-nearest neighbors, decision trees, XGBOOST, and sup-

port vector machine. The machine learning methods were trained using a publicly available

database pertaining to Brazil, which includes individual basic information such as gender and

age range, symptoms, comorbidities, and recent traveling history. The authors report that the

disease outcome can be predicted with a ROC area under curve (AUC) of 0.92, a sensitivity of

0.88, and a specificity of 0.82. The study by Dan Assaf et al. [32] focuses on the identification

of patients at risk for deterioration during their hospital stay using a database from a tertiary

medical center. In their work, the authors train three different machine-learning methods

(neural networks, random forest and classification, and regression tree) from historical and

clinical variables such as APACHE II score, white blood cell count, time from symptoms to

admission, oxygen saturation, and blood lymphocytes count. The results show 88.0% sensitiv-

ity, 92.7% specificity, and 92.0% accuracy. Li Yan et al. [33] propose a decision rule based on

the supervised XGBoost classifier to predict patients at the highest risk. The predictive model

is originally trained with three characteristics: lactic dehydrogenase (LDH), lymphocytes, and

high-sensitivity C-reactive protein (hs-CRP). The results show that the model can accurately

identify the outcome of patients with more than 90% accuracy. Some other efforts focus on

identifying patients requiring specialized care, namely hospitalization and/or specialized care

units [35–37], or patients at a higher fatality risk [38, 39]. For example, Bezzan and Rocco [35]

use laboratory data, collected from Sirio Libanes Hospital in Brazil, to identify patients requir-

ing special care at the hospital and to predict lengths of stay at the specialized care units. The

authors test several ML algorithms to select the best performance. The final selection is the
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XGBOOST algorithm for both targets, which achieves 0.94 ROC AUC for the first target and

0.77 for the second target. Pourhomayoun and Shakibi [39] present machine learning algo-

rithms, including support vector machines, neural networks, random forest, decision tree,

logistic regression, and k-nearest neighbors, to predict the mortality rate of COVID-19

patients. To train the algorithms, the authors use laboratory-confirmed cases belonging to 76

countries around the world. The dataset used contains demographic data, travel history, gen-

eral medical information such as comorbidities, and symptoms. Their results show that the

neural network algorithm achieves the best performance with an accuracy of 93.75%.

In this work, we introduce a machine-learning algorithm which effectively identifies high-

risk patients among those that may have been exposed to the SARS-CoV-2 virus. Our method

employs a supervised artificial neural network which predicts whether a given patient belongs

to one of two classes: class 1, which represents those patients who are more likely to survive

than to die, and class 2 which represents those patients who are more likely to die than to sur-

vive. In order to achieve this classification, we rely on a database with information about past

infections (along with suspected infections), from which we extract a 28-element characteris-

tics vector for each patient. The characteristics include information about comorbidities,

patient demographic data, as well as recent COVID-19-related medical information. Impor-

tantly, although the database does not include information related to clinical manifestations,

diagnosis, and laboratory test findings, our method can still detect high-risk COVID-19

patients successfully. In our algorithm, we apply our rapid identification of patients (belonging

either to class 1 or class 2) at any of four clearly-defined clinical stages of the treatment process,

ranging from stage 1 at which a patient first becomes ill and seeks medical attention, to stage 4

at which not only is the patient hospitalized but requires specialized attention. We have trained

a neural network for each of the four clinical stages, with data corresponding to a characteris-

tics subset, with later clinical stages having access to a larger fraction of the 28 characteristics

as they become known during the treatment process. Our algorithm is able to classify patients

with high accuracy at each of the four clinical stages, with the accuracy value increasing with

the progression from one stage to the next. Remarkably, we demonstrate that our algorithm

can provide an optimal estimator for hypothesis-testing techniques commonly-used in biolog-

ical and medical statistics. This creates a bridge between machine-learning algorithms and

clinical medicine that allows for the introduction of a series of novel strategies, with applica-

tions in different clinical scenarios, in a familiar language for clinicians. We believe that this

technology can be a powerful tool for medical resource allocation and hospital capacity plan-

ning, by making correct, real-time assessments of mortality risks, given the highly specific

characteristics of each particular patient.

2 Materials and methods

2.1 Data

Our studies presented in this paper are based on the publicly-available database of COVID-19

patients from the Mexican Federal Government. This database, which includes all officially

reported confirmed and suspected COVID-19 cases reported in Mexico, is available in the ‘Sta-

tistical Morbidity Yearbooks’ (Anuarios Estadı́sticos de Morbilidad) published by the General

Council of Epidemiology (Dirección General de Epidemiologı́a), part of the Health Ministry

(Secretarı́a de Salud), Mexican Federal Government [40]. The data in the reports are provided

by the National Epidemiologic Surveillance System, which comprises 475 health monitoring

units of viral respiratory diseases (USMERs) distributed across the country. So as to ensure the

representativeness of the data sample, the USMERs are chosen by taking into account demo-

graphic and climatic factors that may cause variations in the transmission conditions. Thus,

PLOS ONE Identification of high-risk COVID-19 patients using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0257234 September 20, 2021 3 / 21

https://doi.org/10.1371/journal.pone.0257234


these units provide attention to representative populations from different age and socioeco-

nomic groups. The data recording process varies from institution to institution according to

local procedures and staff availability. For this reason, all submitted data are considered pre-

liminary and are subject to review and validation by the Health Ministry. Amongst patients

who seek medical attention and/or are tested for COVID-19, the database ends up including

in principle all of those either with a confirmed infection or showing symptoms, indicating a

possible infection. Each patient in the database is classified into seven groups: i) confirmed

COVID-19 infection through a positive real-time reverse transcription-polymerase chain reac-

tion (RT-PCR) test and/or a positive COVID-19 antigen test, ii) clinical-epidemiological asso-

ciation in the absence of a valid test result (i.e. patient reported contact with a confirmed

COVID-19 patient), iii) for deceased patients without a valid test result, designation by a spe-

cial committee, iv) negative RT-PCR test result and/or negative antigen test result, v) labora-

tory result with an invalid result, vi) unprocessed laboratory result, as well as vii) suspected

COVID-19 infection with laboratory test in process [41, 42]. Importantly, so as to avoid dupli-

cated patients, a unique identification number is assigned to each patient. Although the data-

base is updated daily, there is a reporting lag close to two weeks. For the period from April

12th, 2020 to January 31th, 2021 this database contains a historical record of 4,700,464 patients

who have received medical attention at both public and private medical facilities, including

hospitals, clinics, and clinical laboratories in all 32 states, 215,301 of whom correspond to con-

firmed deaths, and 4,485,163 to recovered patients. Table 1 shows relevant demographic data

of COVID-19 patients recorded in the database as of January 31, 2021, breaking down cases by

patient condition, gender, age, and state of residence. Note that the data is collected through a

form filled by each patient during the admission process at the emergency room, clinic, clinical

laboratory, or hospital.

Note that all our algorithms were trained using data obtained from the database with a cut-

off date of January 31th, 2021. The database includes 28 characteristics for each patient, which

can be grouped into three categories: 1) past medical history, 2) demographic data, and 3)

information related to the COVID-19 episode. Category 1 (medical history) includes comor-

bidity information, specifically: diabetes, chronic obstructive pulmonary disease (COPD),

asthma, use of immunosuppressive drugs, hypertension, cardiovascular disease, obesity,

chronic renal disease, asthma, other chronic illnesses, smoking history, and pregnancy. Cate-

gory 2 (demographic data) includes gender, age, state of birth, state of residence, whether the

patient in question self-identifies as indigenous and/or speaks an indigenous language, is a

migrant, or a foreigner. Category 3 (recent medical information) is subdivided into category

Table 1. Demographic characteristics of COVID-19 patients recorded in the database from the Mexican Federal

Government, with a cutoff date of January 31, 2021.

Demographic

data

Description (Number of cases)

Number of

records

(4,700,464)

Patient condition Deceased (215,301), Recovered (4,485,163)

Gender Female (2436975) and Male (2263488)

Age group <18 (214500), 18-40 (2133036), 41-65 (1901409), >65 (451512)

States 1. Ciudad de México (1.4M),

2. Guanajuato, Estado de México, Nuevo León (500k-200k)

3. B. California, Coahuila, Jalisco, Puebla, Sonora, Tabasco, San Luis Potosi, Tamahulipas,

Veracruz (150k-100k)

4. Rest of states (90k-20k)

https://doi.org/10.1371/journal.pone.0257234.t001
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3a, which corresponds to those characteristics that may be known by a patient at the point of

first becoming ill and receiving medical attention, and category 3b, which corresponds to

those characteristics that may become known during the course of medical treatment. Cate-

gory 3a includes the type of medical facility where the patient is being treated, the state where

the medical facility is located, the number of days elapsed from the date of symptom onset to

the beginning of treatment, and exposure to confirmed COVID-19 patients. As mentioned,

USMER is the acronym, in Spanish, used by the General Council of Epidemiology to appoint

the health monitoring units of viral respiratory diseases (Unidades de Salud Monitoras de

Enfermedad Respiratoria Viral) that integrate the Mexican epidemiological surveillance sys-

tem. Sector refers to the type of institution, belonging to the National Health System, that pro-

vided the care. Category 3b includes the COVID-19 status, COVID-19-related pneumonia,

hospital and intensive care unit (ICU) admission, as well as the need for mechanical ventila-

tion. Note that the COVID-19 status characteristic defines to which of the seven groups

described in the previous paragraph a given patient belongs.

A fourth category of characteristics, which could exhibit a high predictive power as part of

our patient classification algorithm, would include information about current symptoms. Such

information is unfortunately not currently available in the public database at our disposal. In

this sense, our work is a retrospective study which can be improved with the incorporation of

additional data in future investigations.

Table 2 summarizes the 28 characteristics and the three categories discussed above. Note

that we have displayed in italics 7 characteristics which we have determined to lack a sufficient

predictive power and/or yield inconsistent results (as derived from too small a population with

Table 2. Classification of characteristics. Characteristics shown in italic font do not exhibit a sufficient predictive power and are therefore not included in our subsequent

analysis. We have divided the clinical treatment into four clinical stages to test our neural networks. Stage 1 corresponds to those patients who are in the process of receiv-

ing initial medical assessment; therefore, characteristics in categories 1,2, and 3a are assigned. For patients in stage 2, the COVID-19 status and pneumonia characteristics

are added to the characteristics vector. When a decision has been made as to whether admit a patient into a hospital or send him/her back home, the hospitalization status

characteristic is added at Stage 3. Finally, Stage 4 includes the intubation and ICU characteristics for those patients in critical condition.

Category Characteristics

1) Medical History 1. Diabetes 7. Obesity

2. COPD 8. Other chronic illnesses

3. Immunosuppressive drugs �Pregnancy
4. Hypertension �Asthma
5. Chronic renal failure �Smoking
6. Cardiovascular diseases

2) Demographic Data 9. Gender �Indigeneous
10. State (birth) �Indigeneous language
11. State (residence) �Migrant
12. Age �Foreigner

3) Recent Medical Info Category 3a 13. USMER designation

14. Sector (medical facility)

15. State (treatment)

16. Days symptoms-treatment

�Exposure to positive patients
Category 3b 17. COVID-19 status

18. COVID-19-related pneumonia

19. Hospitalization status

20. Intubation

21. ICU

https://doi.org/10.1371/journal.pone.0257234.t002
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the characteristic in question). From this point onward, the characteristics vector employed

throughout the manuscript refers to the resulting shortened 21-element vector.

2.2 Conventional techniques in biostatistics

In biostatistics, Bayesian inference, hypothesis testing, variance analysis, and regression tech-

niques are methods extensively employed for statistical evaluation of medical data [43, 44].

Along these lines, we have directly applied the hypothesis testing method [45] in order to

attempt to discriminate between our two classes of patients from the collected data so as to

establish a critical bound which may help us to identify the mortality risk for incoming

COVID-19 patients. With this goal in mind, we use the first four central moments as estima-

tors. Fig 1 shows the normalized statistical distributions obtained for class 2, i.e. deceased

patients (red), and class 1, i.e. recovered patients (blue), using the moments: (a) mean, (b) vari-

ance, (c) skewness, and (d) kurtosis. The central moments were computed from the 21 ele-

ments in the characteristics vector. Note that the resulting distributions for class 1 / class 2

patients exhibit a large degree of overlap. This implies that the desired classification of patients

through the determination of a critical bound is not possible using these estimators.

Bayesian inference constitutes an alternative to frequentist methods, the latter which pro-

vide predictions based on the relative frequencies associated with particular events within a

large number of trials. Applied to our particular case, Bayesian inference would compute a

posterior probability P(Cj|x), where Cj denotes the relevant classes (recovered, j = 1, or

deceased, j = 2), and x represents the characteristics vector, resulting from a prior probability

P(Cj) and the so-called likelihood function P(x|Cj) through Bayes theorem [46], P(Cj|x) = P(x|

Cj)P(Cj)/P(x). Note that in order to determine the likelihood function, P(x|Cj), a model is

required in order to estimate the probability of observing a set of characteristics x given a

known class Cj. Although in principle a viable likelihood function could be derived from the

sample data, this method tends to fail because the variances in parameter calibration can be

rather large along certain directions of the parameter space [6], linked to the large degree of

overlap between the distributions for both classes, which has already been discussed. This

implies that in our case Bayesian inference does not provide a functional approach for the dis-

crimination between class 1 (recovered) and class 2 (deceased) patients.

The conventional statistical tools and techniques used in clinical medicine are static pro-

cesses that are consistent and unchanged. In contrast, machine learning dynamically learns

and modifies itself as the learning process develops, producing a more robust tool to make pre-

dictions. In this context, it has been shown that artificial intelligence methods provide a novel

and promising approach for classification and pattern recognition. In what follows, we design,

train, and test neural networks in order to identify individual patients as belonging to either

class 1 or class 2, relying on historical data, collected from previous patients.

2.3 Neural network

Machine learning is a method of data analysis that endows computer algorithms with the

capacity to “learn” from a known data-set (which includes defining characteristics and an out-

come for each observation), so as to produce a prediction about the outcome given a specific

choice of characteristics. Of course, the quality and size of the training data set are crucial in

determining the resulting performance of the algorithm. In what follows we demonstrate the

use of neural networks trained with the data-set described in Section II. Our neural networks

are then used to predict whether a given patient (not included in the data-set used for training)

belongs to one of two classes: class 1, which represents those patients who are more likely to
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survive than to die, and class 2 which represents, conversely, those patients who are more likely

to die than to survive.

The proposed machine learning algorithm is based on a multilayer feed-forward network

with two sigmoid neurons in the single hidden layer and two softmax neurons in the output

layer. The hidden layer is indicated by a red, dashed-line rectangle in Fig 2, whereas the output

layer is indicated by an orange rectangle. The network’s output represents a probability distri-

bution over the two output classes, which can be interpreted as the survival and mortality

probabilities [47, 48]. Fig 2 shows the architecture of the neural networks which we have

implemented. The blue lines represent the connections between neurons, each characterized

by a synaptic weight. In appendix B we provide a detailed report in which we rank the 21 char-

acteristics by importance as estimated by the synaptic weight magnitude, for each of the two

neurons in the hidden layer, and for each of the four clinical stages.

Fig 1. Normalized distributions for different central moments: (a) mean, (b) variance, (c) skewness, and (d) kurtosis, for class 1 (recovered

patients), shown in blue and for class 2 (deceased patients), shown in red. These central moments were computed from the 21 elements of the

characteristics vector for each patient. These distributions were plotted using the entire dataset with 4, 700, 464 observations.

https://doi.org/10.1371/journal.pone.0257234.g001
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3 Results

We have designed and trained four separate neural networks, each corresponding to a distinct

clinical stage of the treatment process. Patients in stage 1 are those who are in the process of

receiving initial medical assessment and care. For these patients, we can assign data for charac-

teristics in categories 1, 2, and 3a (see Section II and Table 2). Patients in stage 2 are those who

as part of their evaluation already have a known COVID-19 status, and may already have con-

tracted COVID-19-related pneumonia. Therefore, the COVID-19 status and pneumonia char-

acteristics are added to the characteristics vector. Patients in stage 3 are those for whom a

decision has been reached as to whether admit into a hospital or send back home. Therefore,

the hospitalization status is added to the characteristics vector. Patients in stage 4 are those

who in addition to being hospitalized, have either been intubated or admitted into an intensive

care unit. Therefore, the intubation and ICU characteristics are added to the characteristics

vector. Note that in Fig 2, the dashed-colored rectangles indicate the characteristics available

in each of the four clinical stages of treatment.

We train our neural networks using the scaled conjugate gradient back-propagation algo-

rithm, while the performance is quantified through the cross-entropy. It is important to point

out that, in order to guarantee an unbiased patient classification, we have used a balanced

data-set of 430,602 observations, with one half of the observations (215,301) representing all

known deceased patients in the database, and the other half (also 215,301) randomly selected

from those patients who recovered. We have used a 70%/15%/15% training/testing/validation

split of the resulting balanced data-set.

Fig 2. Architecture of the multilayer feed-forward neural network employed in order to classify patients into class 1 (recovered) and class 2

(deceased).

https://doi.org/10.1371/journal.pone.0257234.g002
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In order to assess the performance of our neural networks, we define the specificity or true

negative rate, TNR, as the share of true negatives (TN)—i.e. true recoveries—to the sum of true

negatives and false positives (FP). We also define the sensitivity or true positive rate, TPR, as

the share of true positives (TP)—i.e. true deaths—to the sum of true positives and false nega-

tives (FN). In addition to the specificity and the sensitivity, we also define the accuracy (ACC),

as follows

TNR ¼
TN

TN þ FP
; ð1Þ

TPR ¼
TP

TP þ FN
; ð2Þ

ACC ¼
TP þ TN

TP þ TN þ FPþ FN
: ð3Þ

Once training has been completed, our neural networks can predict with high accuracy

whether a given patient with known characteristics belongs in class 1 (more likely to survive),

or in class 2 (more likely to die). Across all four clinical stages, our machine learning algorithm

exhibits a specificity greater than 82%, a sensitivity greater than 86%, and an accuracy greater

than 84%. In general, since more information becomes available for successive clinical stages,

it is only natural that the specificity, sensitivity, and accuracy all tend to improve when pro-

gressing from one stage to the next. The accuracy, specificity, and sensitivity reach values of

93.5%, 90.9%, and 96.1%, respectively, at stage 4. These three quantities are shown in Table 3

for each of the four clinical stages.

In order to evaluate the performance of our neural networks, we compare our approach

against three different machine learning (ML) algorithms: logistic regression (LR), support

vector machine (SVM), and k-nearest neighbors (kNN). LR is a statistical model based on esti-

mating the probability that a given data entry belongs to a certain class. For the binary case,

Table 3. Accuracy, specificity and sensitivity obtained by the Neural Network (NN), Logistic Regression (LR), Support Vector Machine (SVM) and k-Nearest Neigh-

bors (kNN) algorithms, for each of the four clinical stages.

Stage Algorithm Accuracy Specificity Sensitivity

1 NN 84.3% 82.4% 86.3%

LR 82% 83% 83%

SVM 84% 84% 84%

kNN 81% 80% 83%

2 NN 90.5% 89.1% 91.9%

LR 88% 88% 89%

SVM 88% 88% 89%

kNN 85% 86% 86%

3 NN 93.1% 90.8% 95.5%

LR 92% 92% 93%

SVM 91.8% 91% 93%

kNN 89.1% 89% 89%

4 NN 93.5% 90.9% 96.1%

LR 92.1% 92% 92%

SVM 92.5% 91% 94%

kNN 89.3% 89% 89%

https://doi.org/10.1371/journal.pone.0257234.t003
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this model uses the logistic function to map the output of a linear equation to the range [0, 1].

If outputs are greater than a predefined threshold value, they are assigned to class 1, otherwise

they are classified as class 2 [49]. The SVM algorithm is a machine learning technique that

seeks to construct hyperplanes in an N-dimensional space, to separate two sets of data points

belonging to different classes. The hyperplanes represent decision boundaries that provide a

margin distance so that test data can be attributed to different classes [50]. The kNN method is

a supervised machine learning algorithm used for classification and regression problems. This

algorithm examines the distribution of the training samples and predicts new cases by calculat-

ing a similarity measure, typically distance functions such as the Euclidean distance [51].

Table 3 shows the overall accuracy, specificity, and sensitivity of each predictive model for the

four clinical stages. Our results show that our neural networks exhibit a slightly better perfor-

mance, in terms of accuracy, as compared to the three other ML algorithms that we have

considered (LR, SVM, and kNN). In medical diagnosis, sensitivity / specificity refers to the per-

centage of correctly identified patients who are affected / unaffected by the medical condition

in question. In this context, a higher sensitivity is associated with an enhanced detection rate

of real cases, so that sick patients can receive timely medical attention. This accelerates the

treatment process, however, at the risk of misallocating resources to patients that do not need

such resources. Conversely, a higher specificity leads to the reduction of resource misalloca-

tion, but increases the possible omission of real cases [52]. The latter scenario can be danger-

ous in the context of viruses with a high spreading capability such as SARS-CoV- 2.

Remarkably, our neural networks achieve values>90% for both sensitivity and specificity. Our

findings show that the LR and kNN methods lead to relatively balanced values for both met-

rics, whereas NN and SVM present a slight asymmetry with the sensitivity higher than the

specificity. This asymmetry suggests that our neural networks favor the efficient identification

of high-risk patients during the emergency-department triage process.

Furthermore, note that the simple topology of our algorithm enables low-complexity and

low-cost implementations on general-purpose electronic devices that may include mobile

phones, tablets, and development boards, which could have important implications for the

deployment of this technology in clinics and hospitals [53, 54].

We would like to remark that so as to facilitate the application of our approach, we have

developed a practical application that implements the neural networks described in this study.

This tool has a user-friendly interface and is publicly available in [55]. This application might

facilitate the deployment of this technology across clinics and hospitals, for the real-time iden-

tification of high-risk patients. More importantly, it could help identifying the effects of all

individual characteristics for each patient in question. Note that the computed survival proba-

bility at each of the four clinical stages could serve as a numerical scale to aid in the allocation

of medical resources and the management of hospital capacity.

Finally, we would like to stress that while the data at our disposal pertains to Mexico, a simi-

lar methodology could be applied to data from other countries, i.e. train and test neural net-

works using those variables which are available in each particular database of interest. Also

note that if we had access to current symptoms data for each patient, the predictions provided

by our neural networks would quite possibly exhibit a considerably enhanced accuracy.

3.1 Hybrid machine-learning-assisted frequentist hypothesis-testing

method

As discussed in Section 3, none of the first four central moments as calculated from the 21 ele-

ments of the characteristics vector provide a viable estimator for the hypothesis testing

method. In general, the determination of a viable estimator is a challenging task. Here we
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propose the use of the softmax outputs of our neural networks as estimators, in other words

we let the training of our neural networks accomplish the non-trivial task of determining a

highly-optimized estimator. This becomes a hybrid technique which exploits both machine

learning and standard hypothesis testing.

In Fig 3, we show the resulting distributions of the outputs of each of the four neurons in

our neural networks, for those patients known to have died (red), and for those known to have

recovered (blue). While the two neurons (particularly the first one) in the internal layer can

already do a reasonable job at discriminating between classes 1 and 2, the two neurons in the

outer layer accomplish this classification remarkably well.

In order to evaluate the proposed hybrid method, we consider two metrics, Type-I (α) and

Type-II (β) errors, which are defined by

prðaÞ ¼ prðZ > pajH0Þ; ð4Þ

Fig 3. Statistical distributions for deceased (red) and recovered (blue) patients built from the outputs of: (a) neuron-1 in layer 1, (b) neuron-2 in

layer 1, (c) neuron-1 in layer 2 and (d) neuron-2 in layer 2.

https://doi.org/10.1371/journal.pone.0257234.g003
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prðbÞ ¼ prðZ � pajH0Þ: ð5Þ

Here, Z is the estimator, pα the critical bound and H0 the null hypothesis. We set the null

hypothesis H0 to be the death of the patient in question, while the alternative hypothesis H1 to

be the patient’s survival. Fig 4(a) shows the Type-I (α) and Type-II (β) errors from the hypoth-

esis testing method for the four clinical stages, using the neural network outputs as estimators.

Note that the highest accuracies (see Fig 4(b)) of each stage coincide with the accuracies

obtained solely with the neural networks (see Table 3).

4 Discussion and conclusions

In the midst of this global crisis in which health care systems are overwhelmed, it is of utmost

importance to focus efforts on the development of technological tools that allow achieving

Fig 4. Type-I (α) and Type-II (β) errors, and accuracies for different clinical stages (a) Stage 1, (b) Stage 2, (c) Stage 3, and (d) Stage 4. Overall

accuracy and errors are obtained from the hypothesis testing method as a function of critical bound pα, using the neural network outputs as estimators.

https://doi.org/10.1371/journal.pone.0257234.g004
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optimal use of health care resources. In this regard, it is essential to obtain significant knowl-

edge of the prognostic factors associated with COVID-19 for its early identification. In this

work, we have presented an effective machine-learning algorithm for the identification of

high-risk patients, presenting COVID-19 symptoms. This technology enables rapid identifica-

tion of high-risk patients at four different clinical stages, ranging from the onset of COVID-

19–i.e. at the triage process for patients who arrive at the emergency room–to the need for spe-

cialized care including intubation and intensive care units. In order to train our neural net-

works, we have employed a characteristics vector with 21 elements per patient extracted from

a database which includes historical data for 4, 700, 464 confirmed or suspected COVID-19

cases. These 21 elements include information about comorbidities, demographical informa-

tion, as well as information related to the COVID-19 episode.

We have shown that our neural networks which contain two neurons in the hidden layer

are capable of classifying with high accuracy patients into two classes: class 1, comprising those

patients who are more likely to survive than to die, and class 2, comprising those patients who

are more likely to die than to survive. Furthermore, we have demonstrated that the accuracy,

specificity, and sensitivity reach values up to 93.5%, 90.9%, and 96.1%, respectively.

Interestingly, we have shown that the training of our neural networks can accomplish the

highly non-trivial task of determining an optimal estimator to be used as part of the standard

hypothesis testing method. This results in a hybrid technique that translates the results of our

artificial-intelligence-enabled patient classification algorithm into the language of hypothesis

testing, commonly used in biostatistics and medicine, thus establishing a bridge between these

two disciplines. We believe this result constitutes the foundation for a series of novel strategies

for predicting outcomes in clinical medicine, and to enable new perspectives in clinical deci-

sion making. It is important to note that our algorithm could straightforwardly run on mobile

phones or tablets, which could facilitate its deployment across clinics and hospitals. We point

out that our research group plans to carry out prospective studies in which the tool presented

here is to be applied to future COVID-19 patients as they seek medical attention, including

public and private medical facilities with different budget levels located in urban areas with a

range of population levels, thus allowing us to evaluate the ability of this new instrument to

make useful predictions. We are certain that our work has important implications in the con-

text of the current pandemic for medical resource allocation and hospital capacity planning.

5 Appendix

5.1 Hypothesis testing with specific characteristics

As mentioned in Section 3, the central moments computed from the characteristics vector for

each patient do not constitute viable estimators to be used in hypothesis testing methods. This

is a consequence of the high degree of overlap between the resulting distributions for class 1

(recovered) and class 2 (deceased) patients. With this in mind, we have computed the central

moments for a particular subset of characteristics found to be strongly correlated with the

outcome (death/survival). Fig 5 shows the resulting distributions for the four first central

moments using the following characteristics: age, hospitalization status, intubation, and ICU;

class 1 (recovered) is shown in blue while class 2 (deceased) is shown in red. Clearly, the distri-

butions are much less overlapped as compared to the case where all 21 characteristics are used

(see Fig 1), allowing us to use these moments as viable estimators for hypothesis testing. Note,

however, that the hospitalization status characteristic is only made available at stage 3 of treat-

ment, while intubation and ITU at stage 4. Therefore, unfortunately, these estimators can only

apply in an advanced clinical stages where the patients are already in need of specialized care.
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5.2 Confusion matrices and receiver operating characteristic curves

In order to complement the results presented in this work, we provide details about the perfor-

mance of the artificial neural networks trained for each of the four clinical stages. This is pre-

sented in terms of the confusion matrices, accuracies, and receiver operating characteristic

curves (ROC). Fig 6 shows the confusion matrices that allow us to assess the performance of

neural networks for the rapid identification of high-risk patients in the clinical stages 1

through 4, presented in panels (a) through (d). Note that each matrix is computed from the

15% of observations reserved for testing. While the horizontal axis represents the known out-

comes in the test data-set (target class), the vertical axis represents the predicted class using

our neural networks (predicted class). Note that diagonal values represent successfully

Fig 5. Normalized statistical distributions for different central moments: (a) Mean, (b) Variance, (c) Skewness, and (d) Kurtosis, for class 1

(recovered) shown in blue, and for class 2 (deceased) shown in red. These central moments were computed for a subset of 4 characteristics (age,

hospitalization status, intubation and ICU). The distributions were computed from the whole dataset with 4, 700, 464 observations.

https://doi.org/10.1371/journal.pone.0257234.g005
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classified patients, i.e. true-positive and true-negatives, whereas off-diagonal elements repre-

sent misclassified patients, i.e. false-negatives and false-positives. Fig 6 also displays above each

matrix the overall accuracy calculated from Eq (3). Note that in all clinical stages, the accuracy

is larger than 84%.

Fig 6. Confusion matrices, which quantify the performance of our neural networks in each of the four clinical stages: (a)

Stage 1, (b) Stage 2, (c) Stage 3, and (d) Stage 4. Off-diagonal values correspond to misidentified cases, i.e., false-negatives and

false-positives, whereas the diagonal values represent true-positives and true-negatives.

https://doi.org/10.1371/journal.pone.0257234.g006
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Fig 7 shows the ROC curves of our neural networks for rapid identification of high-risk

patients in each of the four clinical stages 1 through 4, shown in panels (a) through (d). These

curves represent the sensitivity and specificity values computed across all possible threshold

values. Here, the sensitivity is inversely related to the specificity, i.e., as sensitivity increases,

Fig 7. Receiver operating characteristic (ROC) curves that illustrate the diagnostic ability of the neural networks for rapid identification of high-

risk patients in each stage: (a) Stage 1, (b) Stage 2, (c) Stage 3, and (d) Stage 4. The blue lines correspond to recovered patients, whereas the red lines

depict the deceased patients.

https://doi.org/10.1371/journal.pone.0257234.g007
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the specificity decreases. Note that the curves shown in Fig 7 provide equivalent information

to the one presented in Section 3, namely hypothesis testing methods in terms of Type-I and

Type-II errors.

Note that from our analysis it becomes possible to compare quantitatively the relative

importance of each of the 21 characteristics in defining an outcome (death/survival) for a

given patient. In Fig 8 we plot the normalized, absolute value of the synaptic weights for neu-

ron 1 (shown in blue) and neuron 2 (shown in red) as a function of the characteristic number

(1 through 21, see Table 2), for each of the four clinical stages 1 through 4, shown in panels (a)

through (d). We have also included from each of the two internal-layer neurons and for each

of the four clinical stages, a list of the seven dominant characteristics, ranked by the absolute

value of the synaptic weight (value shown within brackets). Interestingly, we find that the age,

Fig 8. Left: Normalized absolute values of the synaptic weights for the two sigmoid neurons in the hidden layer for each clinical stage: (a) Stage 1, (b)

Stage 2, (c) Stage 3, and (d) Stage 4. Right: tables describing the seven dominant characteristics for each of the two neurons the hidden layer, ranked by

the absolute value of the synaptic weight (value shown within brackets).

https://doi.org/10.1371/journal.pone.0257234.g008
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number of days elapsed from the date of symptom onset to the beginning of treatment, and

use of immunosuppressive drugs are variables with a significant influence in almost all clinical

stages, for both neurons in the hidden layer. Note that state (treatment) is an important char-

acteristic in three out of four treatment stages for neuron 1, while sector (medical facility) and

COVID status are important for neuron 2. Some characteristics such as other chronic illnesses,

state (birth), COVID-19-related pneumonia, and hospitalization status impact moderately on

the final decision. Note that some comorbidities including diabetes, hypertension, cardiovas-

cular diseases, and obesity do not appear amongst the seven dominant characteristics at any of

the clinical stages.

5.3 Estimation capacity of neural networks

In order to determine the optimal topology for our neural networks, we monitored the result-

ing performance of the trained neural network as a function of the number of layers and num-

ber of neurons per layer. As an illustration, we preset here results for neural networks related

to the first clinical stage; note, however, that we have obtained similar conclusions for the neu-

ral networks in the remaining clinical stages. While Fig 9(a) shows the overall accuracy as a

function of the number of neurons of a single-hidden-layer network, Fig 9(b) shows the overall

accuracy vs the number of layers, fixing the number of neurons per layer to ten. As may be

appreciated form the figures, the accuracy exhibits essentially a flat dependence on number of

neurons and on number of hidden layers, justifying our neural network design involving a sin-

gle, two-neuron hidden layer. Importantly, an architecture based on a hidden layer with two

neurons enables us to save computation time and implement the algorithm easily.

Fig 9. Overall accuracy of the neural network for the identification of high-risk COVID-19 patients, at the first clinical stage, as

a function of (a) the number of neurons in the hidden layer and (b) the number of hidden layers. In the last case, the number of

neurons in each layer was set to ten.

https://doi.org/10.1371/journal.pone.0257234.g009
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Investigation: Mario A. Quiroz-Juárez, Roberto de J. León-Montiel, Alfred B. U’Ren.
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Using posterior predictive distributions to analyse epidemic models: COVID-19 in Mexico City. Physical

biology. 2020; 17(6):065001. https://doi.org/10.1088/1478-3975/abb115 PMID: 32959788
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