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The COVID-19 pandemic caused a major public health crisis, with severe impacts on global health 
and the economy. Machine learning (ML) has been crucial in developing new technologies to 
address challenges posed by the pandemic, particularly in identifying high-risk COVID-19 patients. 
This identification is vital for efficiently allocating hospital resources and controlling the virus’s 
spread. Comprehensive validation of these intelligent approaches is necessary to confirm their 
clinical usefulness and help create future strategies for managing viral outbreaks. Here we present 
a prospective study to evaluate the performance of state-of-the-art ML models designed to identify 
high-risk COVID-19 patients across four clinical stages. Using artificial neural networks trained with 
historical patient data from Mexico, we assess the models’ accuracy across six epidemiological waves 
without retraining them. We then compare their performance against neural networks trained with 
cumulative historical data up to the end of each wave. The findings reveal that models trained on early 
data can effectively predict high-risk patients in later waves, despite changes in vaccination rates, viral 
strains, and treatments. These results suggest that artificial intelligence-based patient classification 
methods could be robust tools for future pandemics, aiding in predicting clinical outcomes under 
evolving conditions.
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A report of several cases of viral pneumonia by the Wuhan Municipal Health Commission in China on 12 
December 2019 evolved into the declaration of the COVID-19 pandemic by the World Health Organization on 
11 March 20201,2. The profound impact of COVID-19 on a global scale is attributed to its highly contagious nature 
and substantial mortality rate. This infectious disease has not only inflicted a severe toll on the global population 
but has also imposed immense challenges on governments and the world economy3,4. The ensuing strain has 
compelled nations to navigate unprecedented difficulties in their efforts to contain the virus and mitigate its 
far-reaching consequences. The crisis has underscored the inadequacies of healthcare systems globally, revealing 
critical deficiencies in hospital equipment, medical personnel, and overall healthcare infrastructure. This 
has served as a testament to the systemic vulnerabilities and the urgent need for comprehensive emergency 
preparedness and response strategies on a global scale5–7.

Several different strategies have been explored to tackle challenges associated with logistics, supply 
chain management, and the mathematical modeling of viral spread8–16. These endeavors have been aimed 
at preemptively addressing or alleviating deficiencies in emergency-response systems and healthcare 
infrastructures. In particular, the identification of high-risk patients is important because hospital resources 
and capacities must be adequately managed to prevent the collapse of healthcare systems17. In this direction, 
several approaches based on machine-learning algorithms have been proposed to identify, from the earliest stage 
possible, patients who are likely to become ill or critically ill. These approaches make predictions relying on basic 
patient information18–23, clinical symptoms24,25, as well as travel history26 and the discharge time of hospitalized 
patients27. Some other efforts focus on identifying patients that require specialized care, namely hospitalization 
and/or special care units28,29, or patients at a higher fatality risk30.

Further studies have been reported that investigate the dynamics of epidemiological waves, thus addressing 
the complexity of viral spread31,32. Despite notable advances in the development of machine learning-based 
algorithms for the early identification of high-risk patients33, it is crucial to highlight the importance of 
conducting prospective studies that validate the effectiveness and accuracy of these algorithms in real-world 
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situations. The application of prospective approaches will thus significantly contribute to the evaluation of the 
clinical utility of such tools, thus ensuring their reliability in practical settings for the improvement of medical 
decision-making during health emergencies. The successful implementation of such tools may improve resource 
management in hospitals and healthcare units in the event of future health crises.

In this work, we present a prospective validation study using very compact machine-learning models that we 
proposed in Ref.17, designed for the identification of high-risk COVID-19 patients, across four clinical stages, in 
Mexico. Our study is based on a patient database, publicly made available by the Mexican federal government, 
covering the period from the 10th week of 2020 to the 13th week of 2023, which includes (i) demographic, (ii) 
COVID-19 status, and (iii) comorbidity information for patients known or suspected to have been infected with 
COVID-19, as reported from within the Mexican healthcare system. Importantly, the treatment outcome (i.e. 
recovery or death) is available for each patient on this database. To evaluate the predictive performance of our 
models through the six COVID-19 epidemiological waves identified in Mexico, we determine the algorithm 
accuracy for patients within each wave without any retraining of the neural networks reported in Ref.17. 
Subsequently, we compare their effectiveness against neural networks trained with cumulative historical data, 
covering the period up to the end of each wave. Our results indicate that models trained with early historical data 
exhibit strong predictive capabilities throughout all subsequent epidemiological waves. This demonstrates that 
artificial intelligence algorithms can not only provide accurate identification of high-risk patients based on limited 
data, but may be robust despite a constantly evolving set of conditions, particularly in terms of the population 
vaccination status, the dominant viral strains, and the available medical treatments. This paper is structured 
as follows: section “Materials and methods” describes the database used for this study, section “Methodology” 
presents a detailed description of our findings, and section “Results” is devoted to our conclusions.

Materials and methods
Data
The prospective validation study was conducted using the publicly available database of COVID-19 patients in 
Mexico. This database, which includes all officially reported confirmed and suspected cases of COVID-19 in 
Mexico, is available in the Statistical Yearbook of Disease (Anuario Estadístico de Morbilidad) published by the 
General Epidemiological Council (Dirección General de Epidemiología) that is part of the Ministry of Health 
(Secretaría de Salud) of the Federal Government of Mexico34.

As described in Ref.17, each patient profile in the database comprises 28 characteristics. As outlined in Ref.17, 
each patient profile in the database includes 28 characteristics, encompassing medical history, demographic 
details, and recent COVID-19-related medical information. However, the authors excluded 7 of these 
characteristics due to their limited predictive power, inconsistent results stemming from small sample sizes, or 
weak correlations with outcomes. The excluded characteristics were pregnancy, asthma, smoking, indigenous 
status, indigenous language, migrant status, and foreign status35. Following the selection of the 21 statistically 
representative characteristics, the data underwent preprocessing. This involved numeric encoding, which 
converts categorical data into numeric values, followed by min-max normalization of the resulting numeric 
data. Consequently, in our analysis the resulting input vector for neural networks comprised 21 features, 
categorized into three groups: (1) medical history, (2) demographic data, and (3) recent medical information. 
Category 1 includes diabetes, chronic obstructive pulmonary disease (COPD), use of immunosuppressive drugs, 
hypertension, chronic renal failure, and cardiovascular diseases. Category 2 includes gender, age, state of birth, 
state of residence, and age. Category 3 comprises health monitoring units of viral respiratory disease (USMER) 
designation, type of healthcare facility where the patient is receiving treatment, state of treatment, number of 
days between the onset of symptoms and the beginning of treatment, COVID-19 status, COVID-19-related 
pneumonia, hospitalization status, intubation and admission into an intensive care unit (ICU). From these three 
categories, four clinical stages of the treatment process can be identified17, ranging from stage 1, at which the 
patient first seeks medical care, to stage 4, at which the patient is hospitalized and requires specialized medical 
care. Note that the outcome of each treatment stage, i.e. recovered patient or deceased patient, serves as the 
criterion for assessing the predictive accuracy of the neural networks.

In this prospective study, we conduct patient tracking through each epidemiological wave to assess the 
predictive capabilities of the models proposed by Ref.17. It is worth pointing out that those models were trained 
using data covering the period up to 31 January 2021. As of the present writing, it has the following attributes:

 (a) Recorded dates.  The database covers the period from May 12 2020 to April 4 2023. In this period, it con-
tains the historical record of 25,118,719 patients. Figure 1(a) is a summary of the COVID-19 outbreak in 
Mexico. Three statistical indicators are provided for each wave that delineate the progression of the pan-
demic in Mexico: the cumulative epidemic percentage (CEP), the epidemic wave percentage (EWP), and 
the cumulative percentage in the Mexican population (CPM). CEP denotes the proportion of confirmed 
COVID-19 cases at that specific time. EWP represents the ratio of confirmed cases from each epidemiolog-
ical wave to the total confirmed cases in Mexico, whereas CPM indicates the progression of confirmed cases 
over time relative to the total population of Mexico.

 (b) Epidemiological waves. During the pandemic Mexico officially experienced six epidemiological waves 
(EWs) with variable duration and four inter-pandemic periods (IPs). Figure 1(a) illustrates each EW in 
blue, while IPs are highlighted in gray. The corresponding periods and duration, expressed in weeks for 
both, EWs and IPs, are presented in Table 1.

 (c) Database sampling. The database contains daily record updates up to the period IP-4. Unfortunately, in the 
beginning of this inter-pandemic period, the sampling frequency became irregular—attributed to the low 
prevalence of cases—until eventually updates to the database ceased. This implies that when carrying out a 
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prospective study for patients in EW-5, there is uncertainty as to the specific day when a patient transitions 
from one stage to another.

 (d) Survivors and Death Tolls. As of the date of the last update to the database, 456,252 deaths had been 
recorded among the 25,118,719 patients included in the historical database. Figure 1b shows a cumulative 
histogram depicting the total number of deaths experienced within each epidemiological wave during the 
entire COVID-19 outbreak.

It is important to comment on the COVID-19 vaccination campaign in Mexico, which formally started on 24 
december 2020. The latest vaccination record is dated 7 October 2022, indicating that by that date 76.04% of 
the Mexican population had received at least one vaccination dose. Thus, in the period encompassed between 
midway through EW-2 (when the campaign started) and the end of EW-5, slightly more than three-quarters 
of the population received a vaccination36. By examining this information, one can identify specific dates 
corresponding to significant percentages within the vaccinated population. From the total vaccinated population 
up to the date of this study, 25%, 50%, and 75% received their vaccinations on June 7, 2021, August 4, 2021, and 
October 29, 2021, respectively. Figure  1a illustrates these dates with red rectangles, along with the cumulative 
percentage of the country’s population that has received at least one vaccine dose.

Clinical stages
In our study, we have used the same four clinical stages of the treatment process that were identified in Ref.17. 
Each stage includes a specific number of characteristics, as illustrated in the top panels of Fig. 2. Stage 1 involves 
patients undergoing an initial medical evaluation and/or treatment. In Stage 2, patients have a confirmed 
COVID-19 status as part of the medical evaluation, and may already present COVID-19-related pneumonia. 
The patients in stage 3 have either already been admitted to a hospital, or have returned home after a hospital 

Event Period (weeks) Duration (weeks)

EW-1 20 to 39 of 2020 31

EW-2 39 of 2020 to 15 of 2021 28

IP-1 15 to 22 of 2021 07

EW-3 22 to 42 of 2021 20

IP-2 42 to 50 of 2021 08

EW-4 50 of 2021 to 09 of 2022 11

IP-3 09 to 21 of 2022 12

EW-5 21 to 33 of 2022 12

IP-4 33 to 48 of 2022 15

EW-6 48 of 2022 to 13 of 2023 18

Table 1. Epidemiological waves (EW) and inter-pandemic periods (IP) in Mexico from the 10th week of 2020 
to the 13th week of 2023.

 

Fig. 1. (a) Epidemic curve of confirmed cases in Mexico from week 10 of 2020 to week 13 of 2023, spanning 
a total of 162 weeks. Blue regions correspond to epidemiological waves (EW), while gray regions indicate 
inter-pandemic periods (IP). Additionally, vaccination records for persons who received at least one dose 
of complete treatment are indicated in the red rectangles. The initials used in insets correspond to CEP: 
cumulative epidemic percentage, EWP: epidemic wave percentage, and CPM: cumulative percentage in the 
Mexican population. (b) Recorded deaths in Mexico during the COVID-19 outbreak.
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stay; patients in Stage 4 are those who have been intubated or admitted into an ICU unit. This categorization into 
clinical stages led to the training of four separate neural networks, one for each stage, which are discussed below.

Healthcare system coverage limitations
In September 2023, the Government of Mexico, via the General Directorate of Epidemiology, released the 
document entitled “Standardized Guidelines for Epidemiological and Laboratory Surveillance of Viral 
Respiratory Disease.”37. The document outlines the essential protocols and standards for monitoring infectious 
diseases, including those used during the COVID-19 outbreak, influenza, and its variants. Based on its content, 
we have identified potential limitations and critical issues within epidemiological monitoring systems, which 
we recognize as constraints of our study. First, the surveillance strategy relies on 464 Viral Respiratory Disease 
Monitoring Health Units (USMER, by its Spanish initials). Although these units are strategically distributed, they 
may not ensure equitable coverage across all regions, particularly in rural or remote areas with limited access 
to healthcare services. Furthermore, the capacity of these units to handle a sudden surge in service demand is 
not addressed, which could impact both coverage and quality of care during high transmission periods. This 

Fig. 2. The top panels present the four clinical stages that were identified in Ref.17, for each of which we train 
a separate neural network designed to identify high-risk COVID patients. The flow diagram in the bottom-left 
panel illustrates the possible clinical history of a particular patient, for each of waves EW-2 to EW-6, ranging 
from Day 1 to the last day the wave in question. The bottom-right panel presents the number of identified 
patients obtained from our patient tracking protocol in each combination of clinical stage and epidemiological 
wave.
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limitation may result in an underestimation of cases in certain regions, thereby constraining the ability of models 
to generate generalizable predictions.

Second, the accuracy of case detection depends on symptom presentation and sample collection for laboratory 
testing (RT-PCR). In this regard, it does not acknowledge the potential for false negatives or false positives, which 
could compromise surveillance accuracy. False negatives may result from inadequate sample collection, low viral 
load during early or late stages of infection, or technical limitations of diagnostic tools. Notably, sampling is 
conducted on 10% of outpatient cases and 100% of inpatient cases, thereby excluding a significant proportion of 
mild or asymptomatic infections. Since these cases are critical for understanding community transmission and 
disease dynamics, this approach may lead to an underestimation of the virus’s true spread within the population. 
Another inherent limitation is the reliance on the timely reporting of suspected and confirmed cases. While 
the document emphasizes the importance of reporting within 24 hours, it does not address the handling of 
reporting delays, non-reporting, or potential underreporting, particularly in healthcare facilities with limited 
staff or resources. These delays or omissions could compromise the accuracy of epidemiological data.

Finally, although the document underscores the importance of training healthcare personnel in sample 
collection, case reporting, and management, it does not specify whether all levels of the healthcare system, 
particularly in resource-limited regions, have access to this training or if there are gaps in the implementation 
of protocols. Insufficient training or resource availability in certain areas may compromise data quality due to 
inadequate oversight and adherence to established protocols.

Neural network
Supervised machine learning provides computer algorithms with the ability to learn from a known dataset to 
identify features and generate predictions about the outcome given a specific set of features, not included in the 
learning stage. In this context, using the publicly available database of Mexican COVID-19 patients, reference17 
reported on an artificial neural network capable of classifying patients into two mortality-based classes: (a) 
recovered patient or (b) deceased patient. To assess the predictive accuracy of these neural networks over several 
COVID-19 waves, we conducted a prospective study organized into two distinct phases. In the first phase, 
we utilized the neural networks trained in Ref.17 for each of the four clinical stages. We then assessed their 
performance when applied to patients from epidemiological waves occurring after the dates of the data used for 
training. These patients were identified through a patient-tracking protocol within each of the epidemiological 
waves. In the second phase, we trained new neural networks using cumulative historical data up to the end 
of each wave and evaluated them with the same tracked patients from the previous phase. To ensure a fair 
comparison, the neural network architecture was identical to that reported in Ref.17 in all cases.

Importantly, all of our neural networks rely on a feed-forward architecture with two layers. The hidden 
and output layers comprise two sigmoid neurons and two softmax neurons, respectively. Importantly, the 
hyperparameters in the models were manually tuned using a trial-and-error approach, where the outcomes 
of each trial were analyzed and used to iteratively refine the hyperparameters in order to maximize model 
performance. While this method has proven effective in identifying optimal configurations, it can also be time-
consuming38–40. Cross-entropy was selected as the training cost41–43, and the scaled conjugate gradient back-
propagation method was used as optimizer44,45.

Methodology
Similar techniques employing machine learning tools have been utilized to facilitate the monitoring of high-risk 
COVID-19 patients. Chenxi Sun46 offers a model employing a time-aware long short-term memory (T-LSTM) 
neural network, utilizing a database of patient blood samples gathered over a 5-week duration. The database 
comprises 80 features, of which 40 are biomarkers, including Lymph, LDH, hs-CRP, Indirect Bilirubin, and 
Creatinine. Mohammad M. Banoei47 employs a mortality prediction model for high-risk patients utilizing 
a statistically inspired modification of the partial least squares (SIMPLS) model, applied to a dataset of 250 
parameters related to patients’ demographics, clinical factors, and comorbidities. Jun Wang48 utilizes a model 
based on a 3D convolutional neural network to forecast the recovery duration of COVID-19 patients. The model 
is supplied with a database including 2,530 patient records that include computed tomography scans, treatment 
plans, clinical factors, sociodemographic information, and patient symptoms. The referenced approaches are 
significantly reliant on the resources accessible for the specific study region and their inherent characteristics, 
complicating direct comparisons among them.

Our methodology employs a compact feed-forward neural network model to predict the mortality of 
high-risk COVID-19 patients, utilizing a database comprised solely of sociodemographic information and 
comorbidities of all patients in Mexico identified as infected with the SARS-CoV-2 virus, as delineated in37. 
Before initiating any phase of our prospective study, we have first conducted a patient-tracking protocol 
within each of the epidemiological waves, commencing with EW-2. The database analysis revealed that the 
mean incubation period was approximately 19 days. So, in order to consider as many patients as possible in 
the tracking protocol in each wave, we identify patients, who meet the criteria for stage 1, in any of the first 
(n − 19) days of each wave, i.e. from day 1 up to day (n − 19). Here, n corresponds to the duration in days of 
each wave. In stage 1, these criteria correspond to those who seek medical evaluation and/or treatment and are 
suspected of harboring a COVID-19 infection, as yet unconfirmed either through a test or the appearance of 
COVID-19-related pneumonia symptoms. Note that this patient tracking procedure excludes any patients who 
may fall ill later than day (n − 19) of each wave. Selected patients are then monitored day by day, until reaching 
the last day of the wave, registering any patients who may transition to stages 2, 3, and 4. It is important to note 
that we only monitor transitions that involve an upward stage change, i.e. stage 1 to stage 2, stage 2 to stage 3, 
and stage 3 to stage 4. Note that patients in Stage 2 already have a defined COVID-19 status and may present 
COVID-19-related pneumonia symptoms, so the list of features is expanded accordingly. Those patients who 
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transition to Stage 3 have been hospitalized, activating the hospitalization status feature. Patients in Stage 4 are 
those who unfortunately reach a critical state and have undergone intubation or have been admitted to an ICU 
unit, resulting in the activation of the corresponding features in their profiles.

As part of the first phase of our prospective study, we utilized the neural network described in Ref.17 to assess 
its performance using patient data obtained during the tracking protocol. In the second phase, we trained new 
neural networks for each epidemiological wave and their respective clinical stages. These neural networks were 
trained with cumulative historical data up to the end of each wave, resulting in the training of twenty neural 
networks-five sets (EW-2 to EW-6) of four neural networks (one for each clinical stage). Each set of neural 
networks was evaluated using the same patient data obtained during the tracking protocol. This approach was 
designed to assess how responsive mortality prediction is to the number of epidemiological waves used in the 
training process and to forecast the likelihood of death for each clinical stage, both in the training epidemiological 
waves and in future waves.

Results
In this section, we present the results of our patient-tracking protocol as well as the two stages of our prospective 
study. As part of our tracking protocol, we show in the bottom panel of Fig. 2, the number of patients who start 
off at stage 1 in each wave (EW-2 through EW-5), as well as the number transitioning to each of stages 2, 3, and 
4. Despite the severity of the pandemic, the number of patients transitioning to higher stages is relatively low. 
Fortunately, most patients do not suffer complications and remain at stage 1 until discharge. Since our patient-
tracking protocol begins by identifying patients at stage 1 within the first n − 19 days (excluding those who 
started at higher stages) and the transition probability to higher stages is low, the number of patients reaching 
stage 4 is quite small.

Note that our patient tracking protocol described above reflects the sequence of events that could be followed 
by a particular patient. Upon arrival of the patient at a clinic or hospital they are inspected at the triage, and 
from there transitions through some or all of the four clinical stages, with either recovery or death as the final 
outcome. It is at the triage stage that a predictive tool such as our neural networks becomes relevant: it can aid 
healthcare professionals to identify patients who are at higher risk, thus helping to more efficiently manage the 
hospital resources and capacity, and to provide timely treatment. In this regard, we utilized the neural networks 
trained in Ref.17 to assess their predictive power using the patient data obtained during the tracking process. The 
resulting accuracy of these neural networks at each clinical stage and each epidemiological wave is recorded in 
Table 2. The accuracy is calculated as the sum of true negatives and true positives divided by the total number 
of records.

Because the networks from Ref.17 were trained using data covering the period up to 31 January 2021, we have 
tested them on patients ranging from waves EW-2 to EW-6. The accuracies shown in Table 2, which correspond 
to Stages 1 and 2, exhibit high efficiencies due to the large number of records in these stages. Stage 3 does not 
contain a sufficient number of records for the neural networks to detect patterns correctly, in particular for 
waves EW-5 and EW-6, which leads to a markedly lower accuracy. This difficulty is compounded for stage 4, 
which exhibits a very small number of cases leading to poor statistics and the inability to correctly estimate the 
algorithm efficiency.

In the second phase of our prospective study, we train five sets of neural networks using cumulative historical 
data covering the period up to the end of each wave (EW-2 through EW-5). We then evaluate their prediction 
effectiveness using data obtained from the patient tracking process. Through this study, we aim to ascertain 
the optimal number of waves to include in the training of neural networks for predicting high-risk COVID-19 
patients with the highest accuracy possible.

We first describe how the second-phase neural networks are prepared. As was the case in the first phase of 
our study, we trained a separate network for each of the four stages. The first set of four networks is trained with 
data covering the period up until the end of EW-2, i.e. week 15 of 2021. The second set of four networks is trained 
with data covering the period up to the end of EW-3, i.e. week 42 of 2021. This process has been repeated for data 
covering the periods up until the end of EW-4, EW-5, and EW-6, corresponding to week 9 of 2022, week 33 of 
2022, and week 13 of 2023, respectively. Following previous work17, we allocate 70% of the data for training, 15% 
for validation, and 15% for testing. The accuracy of each set of neural networks is shown in Table 3.

To assess the predictive capabilities of our trained network set, we have tested it on the dataset obtained 
through the patient tracking protocol, for each wave, used in the first phase of our study. In Fig. 3 we plot the 

Wave

Stage

1 2 3 4

EW-2 80.19% 88.55% 70.61% 81.90%

EW-3 88.90% 94.36% 74.01% 84.79%

EW-4 80.21% 93.96% 71.75% 85.71%

EW-5 88.03% 93.71% 80.94% 62.50%

EW-6 87.41% 89.78% 68.15% 75.00%

Table 2. Prospective overall accuracy of early-data-trained neural networks. The networks, described in Ref.17, 
are tested with data obtained from the patient tracking process for each of the four clinical stages within every 
epidemiological wave.
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number of new confirmed patients plotted vs date throughout the date span covered by the database, as was 
also done in Fig, 1(a). For each wave EW-2 through EW-5, and each of the four stages, we display the resulting 
accuracies of our networks in the gray boxes. In the five subpanels, (a) through (e), we employ for neural network 
training a progressively larger fraction of the total date span, colored in red (note that we have colored in blue 
the excluded data). Note that despite the enlargement of the training region, the accuracies remain remarkably 
consistent in all cases. More importantly, these accuracies are comparable to those achieved with the neural 
network proposed in Ref.17. These findings suggest that neural networks trained with historical data during the 
early stages of the pandemic exhibit strong predictive capabilities, which permits precise identification of high-
risk patients in subsequent epidemiological waves.

For the sake of completeness, and to explicitly show the robustness of early-data-trained neural networks, 
Fig. 4 shows the accuracy of neural networks trained with increasingly larger datasets (including an increasing 
number of waves) when predicting patient clinical outcomes for patients in each of the stages, and in each of 
waves EW-2 through EW-6. Each subpanel, 4a–e, shows the prediction accuracies of the neural network, with 
a structure identical to that used in Ref.17, trained with data up to the epidemiological wave number indicated 
in the horizontal axis. The subpanel labels shown in the upper right corner denote the epidemiological waves to 
which the patient tracking protocol is applied to obtain the testing data. Note that Stage 4 (red line) of all waves 
presents slight fluctuations, which follow from the limited size of the respective dataset.

Finally, we remark that Fig.  4 allows for concluding that early-data-trained neural networks, such as the 
one used in Ref.17, can predict with a precision greater than 85.05% the mortality outcome for patients who are 
tracked since they enter in Stage 2, i.e., patients with a confirmed diagnosis of COVID-19 who do not yet present 
respiratory complications. The aforementioned results were obtained by training the neural network using data 
up until week 13 of 2021, corresponding to EW-2. This corresponds to 6.55% of the individuals who have been 
vaccinated, which is equivalent to 9.17% of the total Mexican population infected as of the date of the study. This 
may certainly allow for a more efficient allocation of resources for such patients.

Furthermore, we have trained Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression 
(LR) models to compare the performance of our neural networks against other machine learning algorithms. 
We conducted ten independent realizations of each model to ensure statistical reliability. The overall accuracies 
reported represent the mean of these ten realizations. Tables 4, 5, 6, 7 and   8 show the results obtained from each 
model, including also the results from our Neural Network (NN).

To compare the overall performance of the trained models, we calculated the average accuracy across all 
waves and clinical stages. This general score allows for a comparison of each evaluated model. The resulting 
average accuracies were 67.53% for RF, 80.18% for SVM, 69.54% for LR, and 81.01% for NN. Notably, the NN 
and SVM exhibit similar performance, both surpassing that of the RF and LR models. RF achieves an accuracy 
of 80% for stage 2 patients across different training waves (see Tables 4, 5, 6, 7 and 8); however, its performance 
declines significantly in other stages. SVM demonstrates high predictive capability for mortality in stages 1 and 
2 across training waves but exhibits a notable drop in accuracy for stage 4 patients and demands the highest 
computational resources among the four models. The performance of LR closely resembles that of RF, achieving 
over 86% accuracy for stage 2 patients. The proposed neural network model attains an accuracy exceeding 78% 
for stage 1, 85% for stage 2, 65% for stage 3, and 50% for stage 4. We believe that the results of this prospective 
study provide the building blocks for novel strategies to predict outcomes in clinical settings. Moreover, they 
provide new tools for clinical decision-making in the context of future large-scale epidemics or pandemic 
events. To ensure the reproducibility of this study, the codes for the patient-tracking protocol, as well as the 
preprocessing and training/testing models, are available in the GitHub repository at  h t t p s : / / g i t h u b . c o m / C F A T 
A - A I / C O V I D - 1 9 .  

Adaptability of ML-based risk prediction across healthcare systems
While our study proposes a flexible AI-based methodology to identify high-risk COVID-19 patients for 
prioritized care, thereby optimizing resource allocation, several challenges must be addressed to ensure its 
effective application across diverse countries and health systems. Variations in healthcare infrastructure, such 
as the availability of centralized electronic health records, can significantly impact data collection and model 
implementation. In regions with limited electronic health records systems, the input feature vector must be 

Training Data

Stage

1 2 3 4

Ref.17 (January 31, 2021) 84.3% 90.5% 93.1% 93.5%

EW-2 (up to week 15 of 2021) 84.8% 91.0% 94.2% 94.2%

EW-3 (up to week 42 of 2021) 85.1% 91.6% 95.0% 95.1%

EW-4 (up to week 9 of 2022) 87.7% 91.6% 95.0% 95.1%

EW-5 (up to week 33 of 2022) 85.1% 91.6% 96.3% 96.4%

EW-6 (up to week 4 of 2023) 86.1% 91.5% 96.3% 95.5%

Table 3. Overall accuracy of the five sets of neural networks trained with cumulative historical data from each 
epidemiological wave at different clinical stages. These networks are tested during the second phase of the 
prospective study, see Figs. 3 and 4.
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adjusted to align with available data sources. Decentralized data collection methods, such as mobile health 
applications or community-based reporting systems, could serve as viable alternatives.

Data availability and quality also vary significantly across regions. In some areas, data can be fragmented, 
incomplete, or inconsistently recorded. To address these challenges, models can be trained with smaller and 
localized datasets and enhanced using techniques such as data augmentation or transfer learning. Additionally, 

Fig. 3. Prediction accuracy of our neural networks, calculated for patients in each of waves EW-2 through EW-
6, for each of the four clinical stages. The length of the training period is progressively extended, adding one 
wave at a time, as displayed in the five subpanels so that in (e) data from all waves is used for training.
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Fig. 4. Prediction accuracy plotted, for each of stages 1–4 as labeled, vs the length of the training data date 
span, indicated in the horizontal axis as the most recent wave included. The accuracy values are obtained 
upon applying our neural networks to testing data resulting from our patient protocol tracking protocol; each 
subpanel indicates the use of data corresponding to each of waves EW-2 through EW-6.
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sociodemographic characteristics-including age distribution, healthcare-seeking behavior, and cultural practices-
can influence health outcomes and data collection. Integrating demographic stratification and behavioral data 
into the models can help identify the effect of these variations, improving predictive accuracy.

Another critical consideration is the variation in disease prevalence and associated risk factors across 
populations. Comorbidities or demographic variables that are significant predictors in one region may be 
less relevant in another. To ensure relevance and accuracy, models must be retrained with localized data and 
incorporate region-specific risk variables. Engaging local communities and stakeholders can further refine model 

Train Test RF SVM LR NN

Stg1

W2_Stg1 74.38 99.45 64.05 78.98

W3_Stg1 79.51 99.69 77.92 86.6

W4_Stg1 71.30 91.06 68.19 77.41

W5_Stg1 65.35 99.25 73.62 83.95

W6_Stg1 79.45 99.47 73.56 84.41

Stg2

W2_Stg2 80.03 99.37 87.66 86.76

W3_Stg2 88.86 99.81 92.61 91.94

W4_Stg2 84.69 99.86 93.02 91.76

W5_Stg2 84.05 99.93 92.26 90.87

W6_Stg2 85.69 99.78 87.75 86.27

Stg3

W2_Stg3 51.60 80.95 51.69 70.11

W3_Stg3 64.36 73.35 64.1 73.79

W4_Stg3 62.36 79.15 61.26 71.56

W5_Stg3 76.75 79.94 78.03 80.63

W6_Stg3 73.54 72.31 70.77 73.33

Stg4

W2_Stg4 44.48 57.76 43.97 75.86

W3_Stg4 54.63 39.53 59.88 82.99

W4_Stg4 41.83 63.27 42.86 81.63

W5_Stg4 50.0 50.0 56.25 68.75

W6_Stg4 40.0 50.0 50.0 100.0

Table 5. Overall accuracy results for different models trained across the four stages in EW-3. The models were 
tested on identified patients from our tracking protocol across their corresponding waves and stages.

 

Train Test RF SVM LR NN

Stg1

W2_Stg1 60.99 99.42 64.81 78.81

W3_Stg1 71.92 99.73 78.3 87.48

W4_Stg1 62.57 99.72 68.78 78.61

W5_Stg1 59.82 99.74 73.47 86.16

W6_Stg1 65.70 99.72 73.56 83.34

Stg2

W2_Stg2 84.0 98.32 89.02 87.36

W3_Stg2 90.48 99.14 93.53 92.49

W4_Stg2 89.96 98.97 93.78 92.81

W5_Stg2 86.68 99.42 92.98 92.27

W6_Stg2 82.35 98.93 88.79 88.31

Stg3

W2_Stg3 51.64 80.63 52.23 68.63

W3_Stg3 61.17 72.91 63.35 72.69

W4_Stg3 60.64 78.66 60.67 69.98

W5_Stg3 74.01 79.3 77.71 79.06

W6_Stg3 71.46 73.08 70.77 66.67

Stg4

W2_Stg4 46.12 56.03 43.97 80.17

W3_Stg4 53.71 53.69 57.82 83.58

W4_Stg4 41.43 57.14 42.86 83.67

W5_Stg4 45.0 50.0 56.25 62.5

W6_Stg4 32.5 75.0 50.0 100.0

Table 4. Overall accuracy results for different models trained across the four stages in EW-2. The models were 
tested on identified patients from our tracking protocol across their corresponding waves and stages.
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performance by providing insights into culturally specific factors that impact healthcare access and outcomes. 
This approach is essential for tailoring the methodology to the unique epidemiological and sociodemographic 
profiles of different populations.

Conclusions
Although the COVID-19 crisis has by now taken a backseat in current world affairs, it is of utmost importance 
to provide health-sector professionals with technological tools that allow them to effectively manage available 

Train Test RF SVM LR NN

Stg1

W2_Stg1 75.40 99.09 64.73 80.54

W3_Stg1 77.54 99.56 77.91 87.11

W4_Stg1 79.68 99.55 68.0 79.93

W5_Stg1 76.26 99.55 71.8 84.44

W6_Stg1 75.63 99.62 71.76 85.24

Stg2

W2_Stg2 84.53 99.33 86.85 87.05

W3_Stg2 87.31 99.76 92.02 91.95

W4_Stg2 87.93 99.87 92.88 91.46

W5_Stg2 91.17 99.92 92.89 90.82

W6_Stg2 88.46 99.84 89.55 86.51

Stg3

W2_Stg3 48.57 58.01 49.93 69.03

W3_Stg3 62.14 63.19 62.6 73.25

W4_Stg3 64.60 55.56 61.06 70.87

W5_Stg3 77.70 70.38 77.71 80.31

W6_Stg3 71.15 66.92 71.54 71.85

Stg4

W2_Stg4 43.70 50.86 43.97 77.59

W3_Stg4 60.23 57.82 60.18 82.39

W4_Stg4 44.08 53.06 44.9 83.67

W5_Stg4 49.37 56.25 56.25 56.25

W6_Stg4 35.0 75.0 50.0 100.0

Table 7. Overall accuracy results for different models trained across the four stages in EW-5. The models were 
tested on identified patients from our tracking protocol across their corresponding waves and stages.

 

Train Test RF SVM LR NN

Stg1

W2_Stg1 77.82 90.76 63.93 80.41

W3_Stg1 79.44 94.78 77.2 86.92

W4_Stg1 75.85 93.32 67.07 79.59

W5_Stg1 76.91 92.76 70.75 84.14

W6_Stg1 72.64 89.28 70.68 84.77

Stg2

W2_Stg2 80.48 99.53 86.9 86.33

W3_Stg2 88.19 99.89 92.03 91.65

W4_Stg2 87.54 99.96 92.66 91.3

W5_Stg2 84.50 99.98 92.12 90.3

W6_Stg2 82.68 99.98 87.75 85.42

Stg3

W2_Stg3 50.44 80.99 50.74 65.46

W3_Stg3 62.60 73.3 63.3 71.95

W4_Stg3 57.45 79.06 61.26 68.41

W5_Stg3 76.59 79.62 77.71 76.25

W6_Stg3 72.77 72.31 71.54 71.11

Stg4

W2_Stg4 43.01 53.45 43.1 74.14

W3_Stg4 58.23 55.16 60.18 82.09

W4_Stg4 42.86 57.14 44.9 79.94

W5_Stg4 43.12 50.0 56.25 56.25

W6_Stg4 40.0 75.0 50.0 100.0

Table 6. Overall accuracy results for different models trained across the four stages in EW-4. The models were 
tested on identified patients from our tracking protocol across their corresponding waves and stages.

 

Scientific Reports |        (2025) 15:18005 11| https://doi.org/10.1038/s41598-025-00925-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


clinical resources during possible future pandemics or large-scale epidemic events. In Ref.17 we proposed state-
of-the-art machine-learning models that can, with high efficiency, identify high-risk COVID-19 patients across 
four clearly-identified clinical stages. In this work, we have presented a prospective validation study, based on 
tracking individual patients day-to-day in each of the latter five COVID-19 epidemiological waves, among the 
six officially recognized waves in Mexico. We apply our machine-learning models from Ref.17 to the patients in 
datasets obtained from our patient tracking protocol. On the one hand, we employ the same networks reported 
in17 (without any retraining), and apply them prospectively to patients in each of waves EW-2 through EW-6. On 
the other hand, we retrained the networks with data covering an increasing date span to include a successively 
larger number of epidemiological waves. We then applied prospectively these networks to patients in each of 
waves EW-2 through EW-6. Our results show that models trained with early historical data exhibit significant 
predictive capabilities permitting precise identification of high-risk patients in subsequent epidemiological 
waves, with efficiencies in line with those obtained with networks trained with data from an extended date span. 
We believe these results establish the grounds for innovative strategies in predicting individual clinical outcomes 
in the context of epidemiology, providing valuable insights for possible future health crises.

Data availability
The data that support the findings of this study are openly available in the Statistical Morbidity Yearbooks pub-
lished by the General Council of Epidemiology, part of the Health Ministry, Mexican Federal Government. Data 
are available in  h t t p s :  / / w w w .  g o b . m x  / s a l u d  / d o c u  m e n t o s  / d a t o s  - a b i e r  t o s - b  a s e s - h  i s t o r i  c a s d i r  e c c i o  n - g e n e  r a l - d e  - e p 
i d e  m i o l o g i a.
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